BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 17658884)

  • 1. In situ conformation of spider silk proteins in the intact major ampullate gland and in solution.
    Lefèvre T; Leclerc J; Rioux-Dubé JF; Buffeteau T; Paquin MC; Rousseau ME; Cloutier I; Auger M; Gagné SM; Boudreault S; Cloutier C; Pézolet M
    Biomacromolecules; 2007 Aug; 8(8):2342-4. PubMed ID: 17658884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational and orientational transformation of silk proteins in the major ampullate gland of Nephila clavipes spiders.
    Lefèvre T; Boudreault S; Cloutier C; Pézolet M
    Biomacromolecules; 2008 Sep; 9(9):2399-407. PubMed ID: 18702545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders.
    Rousseau ME; Lefèvre T; Pézolet M
    Biomacromolecules; 2009 Oct; 10(10):2945-53. PubMed ID: 19785404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects.
    Dicko C; Knight D; Kenney JM; Vollrath F
    Biomacromolecules; 2004; 5(6):2105-15. PubMed ID: 15530023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins.
    Rising A; Hjälm G; Engström W; Johansson J
    Biomacromolecules; 2006 Nov; 7(11):3120-4. PubMed ID: 17096540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by 13C cross polarization/magic angle spinning NMR.
    Yang M; Nakazawa Y; Yamauchi K; Knight D; Asakura T
    Biomacromolecules; 2005; 6(6):3220-6. PubMed ID: 16283749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of molecular transformations involved in the formation of spider silks.
    Lefèvre T; Boudreault S; Cloutier C; Pézolet M
    J Mol Biol; 2011 Jan; 405(1):238-53. PubMed ID: 21050860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translational pauses during the synthesis of proteins and mRNA structure.
    Zama M
    Nucleic Acids Symp Ser; 1997; (37):179-80. PubMed ID: 9586058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and expression of a cDNA encoding a tubuliform silk protein of the golden web spider Nephila antipodiana.
    Huang W; Lin Z; Sin YM; Li D; Gong Z; Yang D
    Biochimie; 2006 Jul; 88(7):849-58. PubMed ID: 16616407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like "spacer regions".
    Colgin MA; Lewis RV
    Protein Sci; 1998 Mar; 7(3):667-72. PubMed ID: 9541398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of flow in the silk gland.
    Breslauer DN; Lee LP; Muller SJ
    Biomacromolecules; 2009 Jan; 10(1):49-57. PubMed ID: 19053289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface properties and conformation of Nephila clavipes spider recombinant silk proteins at the air-water interface.
    Renault A; Rioux-Dubé JF; Lefèvre T; Pezennec S; Beaufils S; Vié V; Tremblay M; Pézolet M
    Langmuir; 2009 Jul; 25(14):8170-80. PubMed ID: 19400566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of electrospinning and solution casting protocols on the secondary structure of a genetically engineered dragline spider silk analogue investigated via Fourier transform Raman spectroscopy.
    Stephens JS; Fahnestock SR; Farmer RS; Kiick KL; Chase DB; Rabolt JF
    Biomacromolecules; 2005; 6(3):1405-13. PubMed ID: 15877359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia.
    Brooks AE; Steinkraus HB; Nelson SR; Lewis RV
    Biomacromolecules; 2005; 6(6):3095-9. PubMed ID: 16283732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins.
    Motriuk-Smith D; Smith A; Hayashi CY; Lewis RV
    Biomacromolecules; 2005; 6(6):3152-9. PubMed ID: 16283740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental conditions impinge on dragline silk protein composition.
    Guehrs KH; Schlott B; Grosse F; Weisshart K
    Insect Mol Biol; 2008 Sep; 17(5):553-64. PubMed ID: 18828841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein.
    Tian M; Lewis RV
    Biochemistry; 2005 Jun; 44(22):8006-12. PubMed ID: 15924419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 13 C solid-state NMR study of the 13 C-labeled peptide, (E)8 GGLGGQGAG(A)6 GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning.
    Yazawa K; Yamaguchi E; Knight D; Asakura T
    Biopolymers; 2012 Jun; 97(6):347-54. PubMed ID: 21913180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution.
    Leclerc J; Lefèvre T; Pottier F; Morency LP; Lapointe-Verreault C; Gagné SM; Auger M
    Biopolymers; 2012 Jun; 97(6):337-46. PubMed ID: 21898365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the protein components of Nephila clavipes dragline silk.
    Sponner A; Schlott B; Vollrath F; Unger E; Grosse F; Weisshart K
    Biochemistry; 2005 Mar; 44(12):4727-36. PubMed ID: 15779899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.