These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 17658909)

  • 21. Coaxial Electrospray of Ranibizumab-Loaded Microparticles for Sustained Release of Anti-VEGF Therapies.
    Zhang L; Si T; Fischer AJ; Letson A; Yuan S; Roberts CJ; Xu RX
    PLoS One; 2015; 10(8):e0135608. PubMed ID: 26273831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases.
    Choonara YE; Pillay V; Danckwerts MP; Carmichael TR; du Toit LC
    J Pharm Sci; 2010 May; 99(5):2219-39. PubMed ID: 19894268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro and in vivo evaluation of in situ gelling systems for sustained topical ophthalmic delivery: state of the art and beyond.
    Destruel PL; Zeng N; Maury M; Mignet N; Boudy V
    Drug Discov Today; 2017 Apr; 22(4):638-651. PubMed ID: 28017837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intravitreal hydrogels for sustained release of therapeutic proteins.
    Ilochonwu BC; Urtti A; Hennink WE; Vermonden T
    J Control Release; 2020 Oct; 326():419-441. PubMed ID: 32717302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled and continuous release ocular drug delivery systems: pros and cons.
    Abdelkader H; Alany RG
    Curr Drug Deliv; 2012 Jul; 9(4):421-30. PubMed ID: 22640036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New ophthalmic drug delivery systems.
    Castro-Balado A; Mondelo-García C; Zarra-Ferro I; Fernández-Ferreiro A
    Farm Hosp; 2020 Jul; 44(4):149-157. PubMed ID: 32646346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cubosomes and other potential ocular drug delivery vehicles for macromolecular therapeutics.
    Hartnett TE; O'Connor AJ; Ladewig K
    Expert Opin Drug Deliv; 2015; 12(9):1513-26. PubMed ID: 25745885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Challenges and opportunities for drug delivery to the posterior of the eye.
    Cabrera FJ; Wang DC; Reddy K; Acharya G; Shin CS
    Drug Discov Today; 2019 Aug; 24(8):1679-1684. PubMed ID: 31175955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration.
    Hussain RM; Ciulla TA
    Expert Opin Emerg Drugs; 2017 Sep; 22(3):235-246. PubMed ID: 28756707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in intraocular sustained-release drug delivery devices.
    Cao Y; Samy KE; Bernards DA; Desai TA
    Drug Discov Today; 2019 Aug; 24(8):1694-1700. PubMed ID: 31173915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-acting intraocular Delivery strategies for biological therapy of age-related macular degeneration.
    Iyer S; Radwan AE; Hafezi-Moghadam A; Malyala P; Amiji M
    J Control Release; 2019 Feb; 296():140-149. PubMed ID: 30660630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Progress in sustained-release drug delivery system for treatment of posterior segment eye diseases].
    Sun SM; Cheng LY
    Zhonghua Yan Ke Za Zhi; 2013 Sep; 49(9):847-50. PubMed ID: 24330936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pharmacology of drugs formulated with DepoFoam: a sustained release drug delivery system for parenteral administration using multivesicular liposome technology.
    Angst MS; Drover DR
    Clin Pharmacokinet; 2006; 45(12):1153-76. PubMed ID: 17112293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems.
    Yasin MN; Svirskis D; Seyfoddin A; Rupenthal ID
    J Control Release; 2014 Dec; 196():208-21. PubMed ID: 25307997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug delivery to the posterior segment of the eye for pharmacologic therapy.
    Shah SS; Denham LV; Elison JR; Bhattacharjee PS; Clement C; Huq T; Hill JM
    Expert Rev Ophthalmol; 2010 Feb; 5(1):75-93. PubMed ID: 20305803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Delivery of celecoxib for treating diseases of the eye: influence of pigment and diabetes.
    Amrite A; Pugazhenthi V; Cheruvu N; Kompella U
    Expert Opin Drug Deliv; 2010 May; 7(5):631-45. PubMed ID: 20205602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradable Microspheres as Intravitreal Delivery Systems for Prolonged Drug Release. What is their Eminence in the Nanoparticle Era?
    Gavini E; Bonferoni MC; Rassu G; Obinu A; Ferrari F; Giunchedi P
    Curr Drug Deliv; 2018; 15(7):930-940. PubMed ID: 29484995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N-acetylcarnosine lubricant eyedrops possess all-in-one universal antioxidant protective effects of L-carnosine in aqueous and lipid membrane environments, aldehyde scavenging, and transglycation activities inherent to cataracts: a clinical study of the new vision-saving drug N-acetylcarnosine eyedrop therapy in a database population of over 50,500 patients.
    Babizhayev MA; Micans P; Guiotto A; Kasus-Jacobi A
    Am J Ther; 2009; 16(6):517-33. PubMed ID: 19487926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfabricated drug delivery systems: from particles to pores.
    Tao SL; Desai TA
    Adv Drug Deliv Rev; 2003 Feb; 55(3):315-28. PubMed ID: 12628319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.