These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 17658993)

  • 21. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells.
    Buxton AN; Zhu J; Marchant R; West JL; Yoo JU; Johnstone B
    Tissue Eng; 2007 Oct; 13(10):2549-60. PubMed ID: 17655489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels.
    Goraltchouk A; Freier T; Shoichet MS
    Biomaterials; 2005 Dec; 26(36):7555-63. PubMed ID: 16005955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-responsive biomaterials: development and applications.
    Katz JS; Burdick JA
    Macromol Biosci; 2010 Apr; 10(4):339-48. PubMed ID: 20014197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior.
    Burkoth AK; Burdick J; Anseth KS
    J Biomed Mater Res; 2000 Sep; 51(3):352-9. PubMed ID: 10880076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman imaging for quantification of the volume fraction of biodegradable polymers in histological preparations.
    Nandagawali ST; Yerramshetty JS; Akkus O
    J Biomed Mater Res A; 2007 Sep; 82(3):611-7. PubMed ID: 17315235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioactive composite materials for tissue engineering scaffolds.
    Boccaccini AR; Blaker JJ
    Expert Rev Med Devices; 2005 May; 2(3):303-17. PubMed ID: 16288594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradable synthetic polymers for tissue engineering.
    Gunatillake PA; Adhikari R
    Eur Cell Mater; 2003 May; 5():1-16; discussion 16. PubMed ID: 14562275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oligoaniline-based conductive biomaterials for tissue engineering.
    Zarrintaj P; Bakhshandeh B; Saeb MR; Sefat F; Rezaeian I; Ganjali MR; Ramakrishna S; Mozafari M
    Acta Biomater; 2018 May; 72():16-34. PubMed ID: 29625254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of cardiomyocyte orientation on a microscaffold fabricated by photopolymerization with laser beam interference.
    Fujita A; Fujita K; Nakamura O; Matsuda T; Kawata S
    J Biomed Opt; 2006; 11(2):021015. PubMed ID: 16674190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional pattering of poly (ethylene Glycol) hydrogels through surface-initiated photopolymerization.
    Papavasiliou G; Songprawat P; Pérez-Luna V; Hammes E; Morris M; Chiu YC; Brey E
    Tissue Eng Part C Methods; 2008 Jun; 14(2):129-40. PubMed ID: 18471086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New biotextiles for tissue engineering: development, characterization and in vitro cellular viability.
    Almeida LR; Martins AR; Fernandes EM; Oliveira MB; Mano JF; Correlo VM; Pashkuleva I; Marques AP; Ribeiro AS; Durães NF; Silva CJ; Bonifácio G; Sousa RA; Oliveira AL; Reis RL
    Acta Biomater; 2013 Sep; 9(9):8167-81. PubMed ID: 23727248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds.
    Leach JB; Schmidt CE
    Biomaterials; 2005 Jan; 26(2):125-35. PubMed ID: 15207459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing porous scaffolds for tissue engineering.
    Bonfield W
    Philos Trans A Math Phys Eng Sci; 2006 Jan; 364(1838):227-32. PubMed ID: 18272463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioresponsive phosphoester hydrogels for bone tissue engineering.
    Wang DA; Williams CG; Yang F; Cher N; Lee H; Elisseeff JH
    Tissue Eng; 2005; 11(1-2):201-13. PubMed ID: 15738675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review paper: progress in the field of conducting polymers for tissue engineering applications.
    Bendrea AD; Cianga L; Cianga I
    J Biomater Appl; 2011 Jul; 26(1):3-84. PubMed ID: 21680608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface modification of polyester biomaterials for tissue engineering.
    Jiao YP; Cui FZ
    Biomed Mater; 2007 Dec; 2(4):R24-37. PubMed ID: 18458475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The engineering of craniofacial tissues in the laboratory: a review of biomaterials for scaffolds and implant coatings.
    Abukawa H; Papadaki M; Abulikemu M; Leaf J; Vacanti JP; Kaban LB; Troulis MJ
    Dent Clin North Am; 2006 Apr; 50(2):205-16, viii. PubMed ID: 16530058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.