These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 17659281)

  • 41. Molecular and catalytic properties of a novel cytochrome c nitrite reductase from nitrate-reducing haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens.
    Tikhonova TV; Slutsky A; Antipov AN; Boyko KM; Polyakov KM; Sorokin DY; Zvyagilskaya RA; Popov VO
    Biochim Biophys Acta; 2006 Apr; 1764(4):715-23. PubMed ID: 16500161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Elucidating the mechanism for the reduction of nitrite by copper nitrite reductase--a contribution from quantum chemical studies.
    De Marothy SA; Blomberg MR; Siegbahn PE
    J Comput Chem; 2007 Jan; 28(2):528-39. PubMed ID: 17186474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of a conserved glutamine residue in tuning the catalytic activity of Escherichia coli cytochrome c nitrite reductase.
    Clarke TA; Kemp GL; Van Wonderen JH; Doyle RM; Cole JA; Tovell N; Cheesman MR; Butt JN; Richardson DJ; Hemmings AM
    Biochemistry; 2008 Mar; 47(12):3789-99. PubMed ID: 18311941
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tuning of functional heme reduction potentials in Shewanella fumarate reductases.
    Pessanha M; Rothery EL; Miles CS; Reid GA; Chapman SK; Louro RO; Turner DL; Salgueiro CA; Xavier AV
    Biochim Biophys Acta; 2009 Feb; 1787(2):113-20. PubMed ID: 19081388
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuit in the biological nitrogen cycle that competes with denitrification.
    Mohan SB; Schmid M; Jetten M; Cole J
    FEMS Microbiol Ecol; 2004 Sep; 49(3):433-43. PubMed ID: 19712292
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional roles of the heme architecture and its environment in tetraheme cytochrome c.
    Akutsu H; Takayama Y
    Acc Chem Res; 2007 Mar; 40(3):171-8. PubMed ID: 17370988
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pentahaem cytochrome c nitrite reductase: reaction with hydroxylamine, a potential reaction intermediate and substrate.
    Rudolf M; Einsle O; Neese F; Kroneck PM
    Biochem Soc Trans; 2002 Aug; 30(4):649-53. PubMed ID: 12196156
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Octaheme nitrite reductases: structure and properties.
    Tikhonova TV; Trofimov AA; Popov VO
    Biochemistry (Mosc); 2012 Oct; 77(10):1129-38. PubMed ID: 23157293
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of purified c-type heme-containing peptides and identification of c-type heme-attachment sites in Shewanella oneidenis cytochromes using mass spectrometry.
    Yang F; Bogdanov B; Strittmatter EF; Vilkov AN; Gritsenko M; Shi L; Elias DA; Ni S; Romine M; Pasa-Tolić L; Lipton MS; Smith RD
    J Proteome Res; 2005; 4(3):846-54. PubMed ID: 15952731
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Redox properties of lysine- and methionine-coordinated hemes ensure downhill electron transfer in NrfH2A4 nitrite reductase.
    Todorovic S; Rodrigues ML; Matos D; Pereira IA
    J Phys Chem B; 2012 May; 116(19):5637-43. PubMed ID: 22519292
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase: insights from density functional theory studies.
    Bykov D; Neese F
    Inorg Chem; 2015 Oct; 54(19):9303-16. PubMed ID: 26237518
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of multihaem cytochromes in the respiration of nitrite in Escherichia coli and Fe(III) in Shewanella oneidensis.
    Clarke TA; Holley T; Hartshorne RS; Fredrickson JK; Zachara JM; Shi L; Richardson DJ
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1005-10. PubMed ID: 18793179
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probing the unusual oxidation/reduction behavior of Paracoccus pantotrophus cytochrome cd1 nitrite reductase by replacing a switchable methionine heme iron ligand with histidine.
    Zajicek RS; Cartron ML; Ferguson SJ
    Biochemistry; 2006 Sep; 45(37):11208-16. PubMed ID: 16964982
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Magnetic circular dichroism evidence for a weakly coupled heme-radical pair at the active site of cytochrome cd1, a nitrite reductase.
    Oganesyan VS; Cheesman MR; Thomson AJ
    Inorg Chem; 2007 Dec; 46(26):10950-2. PubMed ID: 18044879
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Linkage isomerism in nitrite reduction by cytochrome cd1 nitrite reductase.
    Silaghi-Dumitrescu R
    Inorg Chem; 2004 Jun; 43(12):3715-8. PubMed ID: 15180427
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism of the six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase.
    Einsle O; Messerschmidt A; Huber R; Kroneck PM; Neese F
    J Am Chem Soc; 2002 Oct; 124(39):11737-45. PubMed ID: 12296741
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cytochrome c nitrite reductase from Wolinella succinogenes. Structure at 1.6 A resolution, inhibitor binding, and heme-packing motifs.
    Einsle O; Stach P; Messerschmidt A; Simon J; Kröger A; Huber R; Kroneck PM
    J Biol Chem; 2000 Dec; 275(50):39608-16. PubMed ID: 10984487
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mapping the iron binding site(s) on the small tetraheme cytochrome of Shewanella oneidensis MR-1.
    Qian Y; Paquete CM; Louro RO; Ross DE; Labelle E; Bond DR; Tien M
    Biochemistry; 2011 Jul; 50(28):6217-24. PubMed ID: 21682327
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Paracoccus pantotrophus NapC can reductively activate cytochrome cd1 nitrite reductase.
    Zajicek RS; Allen JW; Cartron ML; Richardson DJ; Ferguson SJ
    FEBS Lett; 2004 May; 565(1-3):48-52. PubMed ID: 15135051
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA.
    Gao H; Yang ZK; Barua S; Reed SB; Romine MF; Nealson KH; Fredrickson JK; Tiedje JM; Zhou J
    ISME J; 2009 Aug; 3(8):966-76. PubMed ID: 19387485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.