BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 17659286)

  • 21. Measurement and meaning of cellular thiol:disufhide redox status.
    Comini MA
    Free Radic Res; 2016; 50(2):246-71. PubMed ID: 26695718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics.
    Hu W; Tedesco S; Faedda R; Petrone G; Cacciola SO; O'Keefe A; Sheehan D
    Talanta; 2010 Feb; 80(4):1569-75. PubMed ID: 20082816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficacy of antioxidants in the yeast Saccharomyces cerevisiae correlates with their effects on protein thiols.
    Bednarska S; Leroy P; Zagulski M; Bartosz G
    Biochimie; 2008 Oct; 90(10):1476-85. PubMed ID: 18555025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Susceptibilities of intracellular and surface sulphydryl groups of Escherichia coli to oxidation by hyperoxia.
    Stees JL; Brown OR
    Microbios; 1973; 7(28):257-66. PubMed ID: 4584425
    [No Abstract]   [Full Text] [Related]  

  • 25. Thiol-disulfide redox proteomics in plant research.
    Muthuramalingam M; Dietz KJ; Ströher E
    Methods Mol Biol; 2010; 639():219-38. PubMed ID: 20387049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress.
    Carmel-Harel O; Storz G
    Annu Rev Microbiol; 2000; 54():439-61. PubMed ID: 11018134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gender difference as regards myocardial protein oxidation in aged rats: male rats have increased oxidative protein damage.
    Kayali R; Cakatay U; Uzun H; Genç H
    Biogerontology; 2007 Dec; 8(6):653-61. PubMed ID: 17846913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of thiol redox state modulators on oxidative stress and sclerotial differentiation of the phytopathogenic fungus Rhizoctonia solani.
    Patsoukis N; Georgiou CD
    Arch Microbiol; 2007 Sep; 188(3):225-33. PubMed ID: 17429612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox-based endoplasmic reticulum dysfunction in neurological diseases.
    Bánhegyi G; Mandl J; Csala M
    J Neurochem; 2008 Oct; 107(1):20-34. PubMed ID: 18643792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence against a role of ketone bodies in the generation of oxidative stress in human erythrocytes by the application of reliable methods for thiol redox form detection.
    Rossi R; Giustarini D; Colombo G; Milzani A; Dalle-Donne I
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(28):3467-74. PubMed ID: 19443279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidative damage induced by herbicides is mediated by thiol oxidation and hydroperoxides production.
    Braconi D; Bernardini G; Fiorani M; Azzolini C; Marzocchi B; Proietti F; Collodel G; Santucci A
    Free Radic Res; 2010 Aug; 44(8):891-906. PubMed ID: 20528566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of alpha-lipoic acid on LPS-induced oxidative stress in the heart.
    Goraca A; Piechota A; Huk-Kolega H
    J Physiol Pharmacol; 2009 Mar; 60(1):61-8. PubMed ID: 19439808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the activity and folding of the glutathione transferase from Escherichia coli and the roles of residues Cys(10) and His(106).
    Wang XY; Zhang ZR; Perrett S
    Biochem J; 2009 Jan; 417(1):55-64. PubMed ID: 18778244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thiols and the chemoprevention of cancer.
    Huber WW; Parzefall W
    Curr Opin Pharmacol; 2007 Aug; 7(4):404-9. PubMed ID: 17644484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rate enhancement of the oxidative folding of lysozyme by the use of aromatic thiol containing redox buffers.
    Gurbhele-Tupkar MC; Perez LR; Silva Y; Lees WJ
    Bioorg Med Chem; 2008 Mar; 16(5):2579-90. PubMed ID: 18065232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative stress and thioredoxin system.
    Koháryová M; Kolárová M
    Gen Physiol Biophys; 2008 Jun; 27(2):71-84. PubMed ID: 18645221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gossypol induces apoptosis in ovarian cancer cells through oxidative stress.
    Wang J; Jin L; Li X; Deng H; Chen Y; Lian Q; Ge R; Deng H
    Mol Biosyst; 2013 Jun; 9(6):1489-97. PubMed ID: 23532321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thiol redox proteomics identifies differential targets of cytosolic and mitochondrial glutaredoxin-2 isoforms in Saccharomyces cerevisiae. Reversible S-glutathionylation of DHBP synthase (RIB3).
    McDonagh B; Requejo R; Fuentes-Almagro CA; Ogueta S; Bárcena JA; Padilla CA
    J Proteomics; 2011 Oct; 74(11):2487-97. PubMed ID: 21565288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox-regulated cochaperone activity of the human DnaJ homolog Hdj2.
    Choi HI; Lee SP; Kim KS; Hwang CY; Lee YR; Chae SK; Kim YS; Chae HZ; Kwon KS
    Free Radic Biol Med; 2006 Feb; 40(4):651-9. PubMed ID: 16458196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast.
    Toledano MB; Delaunay-Moisan A; Outten CE; Igbaria A
    Antioxid Redox Signal; 2013 May; 18(13):1699-711. PubMed ID: 23198979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.