These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 17659286)

  • 41. CxxS: fold-independent redox motif revealed by genome-wide searches for thiol/disulfide oxidoreductase function.
    Fomenko DE; Gladyshev VN
    Protein Sci; 2002 Oct; 11(10):2285-96. PubMed ID: 12237451
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Determination of reduced cysteine in oenological cell wall fractions of Saccharomyces cerevisiae.
    Tirelli A; Fracassetti D; De Noni I
    J Agric Food Chem; 2010 Apr; 58(8):4565-70. PubMed ID: 20359223
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death.
    Banjac A; Perisic T; Sato H; Seiler A; Bannai S; Weiss N; Kölle P; Tschoep K; Issels RD; Daniel PT; Conrad M; Bornkamm GW
    Oncogene; 2008 Mar; 27(11):1618-28. PubMed ID: 17828297
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system.
    Gostimskaya I; Grant CM
    Free Radic Biol Med; 2016 May; 94():55-65. PubMed ID: 26898146
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The glutathione system and the related thiol network in Caenorhabditis elegans.
    Ferguson GD; Bridge WJ
    Redox Biol; 2019 Jun; 24():101171. PubMed ID: 30901603
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalysis of oxidative protein folding by small-molecule diselenides.
    Beld J; Woycechowsky KJ; Hilvert D
    Biochemistry; 2008 Jul; 47(27):6985-7. PubMed ID: 18553979
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome.
    Silva GM; Netto LE; Discola KF; Piassa-Filho GM; Pimenta DC; Bárcena JA; Demasi M
    FEBS J; 2008 Jun; 275(11):2942-55. PubMed ID: 18435761
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitrosative/oxidative modifications and ageing.
    Musci G; Persichini T; Casadei M; Mazzone V; Venturini G; Polticelli F; Colasanti M
    Mech Ageing Dev; 2006 Jun; 127(6):544-51. PubMed ID: 16530251
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thiol/disulfide redox states in signaling and sensing.
    Go YM; Jones DP
    Crit Rev Biochem Mol Biol; 2013; 48(2):173-81. PubMed ID: 23356510
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of zinc(II) on thioredoxin/glutathione disulfide exchange: QM/MM studies to explore how zinc(II) accelerates exchange in higher dielectric environments.
    Kurian R; Bruce MR; Bruce AE; Amar FG
    Metallomics; 2015 Aug; 7(8):1265-73. PubMed ID: 26058002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scavenging reactive oxygen species by rice dehydroascorbate reductase alleviates oxidative stresses in Escherichia coli.
    Shin SY; Kim IS; Kim YH; Park HM; Lee JY; Kang HG; Yoon HS
    Mol Cells; 2008 Dec; 26(6):616-20. PubMed ID: 19011360
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glutathione in plants: an integrated overview.
    Noctor G; Mhamdi A; Chaouch S; Han Y; Neukermans J; Marquez-Garcia B; Queval G; Foyer CH
    Plant Cell Environ; 2012 Feb; 35(2):454-84. PubMed ID: 21777251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thiol/Disulfide system plays a crucial role in redox protection in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum.
    Norambuena J; Flores R; Cárdenas JP; Quatrini R; Chávez R; Levicán G
    PLoS One; 2012; 7(9):e44576. PubMed ID: 22970253
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Oxidative stress as an universal cause of aging--from human somatic cells to the unicellular yeast and bacteria].
    Ksiazek K
    Postepy Biochem; 2010; 56(3):260-8. PubMed ID: 21117313
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemical dissection of an essential redox switch in yeast.
    Paulsen CE; Carroll KS
    Chem Biol; 2009 Feb; 16(2):217-25. PubMed ID: 19230722
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification.
    Irigoín F; Cibils L; Comini MA; Wilkinson SR; Flohé L; Radi R
    Free Radic Biol Med; 2008 Sep; 45(6):733-42. PubMed ID: 18588970
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways.
    Le Moan N; Clement G; Le Maout S; Tacnet F; Toledano MB
    J Biol Chem; 2006 Apr; 281(15):10420-30. PubMed ID: 16418165
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism of thioredoxin-catalyzed disulfide reduction. Activation of the buried thiol and role of the variable active-site residues.
    Carvalho AT; Swart M; van Stralen JN; Fernandes PA; Ramos MJ; Bickelhaupt FM
    J Phys Chem B; 2008 Feb; 112(8):2511-23. PubMed ID: 18237164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.