These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 17659289)

  • 21. Assessment of rectus femoris function during initial swing phase.
    Nene A; Mayagoitia R; Veltink P
    Gait Posture; 1999 Mar; 9(1):1-9. PubMed ID: 10575064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitivity of maximum sprinting speed to characteristic parameters of the muscle force-velocity relationship.
    Miller RH; Umberger BR; Caldwell GE
    J Biomech; 2012 May; 45(8):1406-13. PubMed ID: 22405495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Muscle force redistributes segmental power for body progression during walking.
    Neptune RR; Zajac FE; Kautz SA
    Gait Posture; 2004 Apr; 19(2):194-205. PubMed ID: 15013508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of walking speed on muscle function and mechanical energetics.
    Neptune RR; Sasaki K; Kautz SA
    Gait Posture; 2008 Jul; 28(1):135-43. PubMed ID: 18158246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2001 Nov; 34(11):1387-98. PubMed ID: 11672713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designs and performance of microprocessor-controlled knee joints.
    Thiele J; Westebbe B; Bellmann M; Kraft M
    Biomed Tech (Berl); 2014 Feb; 59(1):65-77. PubMed ID: 24176961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of feedback and feedforward strategies to locomotor adaptations.
    Lam T; Anderschitz M; Dietz V
    J Neurophysiol; 2006 Feb; 95(2):766-73. PubMed ID: 16424453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Individual muscle contributions to the axial knee joint contact force during normal walking.
    Sasaki K; Neptune RR
    J Biomech; 2010 Oct; 43(14):2780-4. PubMed ID: 20655046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of muscle damage on walking biomechanics are speed-dependent.
    Tsatalas T; Giakas G; Spyropoulos G; Paschalis V; Nikolaidis MG; Tsaopoulos DE; Theodorou AA; Jamurtas AZ; Koutedakis Y
    Eur J Appl Physiol; 2010 Nov; 110(5):977-88. PubMed ID: 20668871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring variations in gait patterns and joint motion characteristics in school-aged children across different walking speeds: a comprehensive motion analysis study.
    Bari MA; Mir HN; Parrey JA; Ateeq A; Ajhar A; Al Muslem WH; Nuhmani S; Alduhishy A; Alsubaiei ME
    J Med Life; 2023 Jun; 16(6):895-903. PubMed ID: 37675178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electromyographic and kinematic nondisabled gait differences at extremely slow overground and treadmill walking speeds.
    Nymark JR; Balmer SJ; Melis EH; Lemaire ED; Millar S
    J Rehabil Res Dev; 2005; 42(4):523-34. PubMed ID: 16320147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased power generation in impaired lower extremities correlated with changes in walking speeds in sub-acute stroke patients.
    Brincks J; Nielsen JF
    Clin Biomech (Bristol, Avon); 2012 Feb; 27(2):138-44. PubMed ID: 21899933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait.
    Shelburne KB; Torry MR; Pandy MG
    J Orthop Res; 2006 Oct; 24(10):1983-90. PubMed ID: 16900540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lower limb angular velocity during walking at various speeds.
    Mentiplay BF; Banky M; Clark RA; Kahn MB; Williams G
    Gait Posture; 2018 Sep; 65():190-196. PubMed ID: 30558929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of walking speed on hamstrings length and lengthening velocity in children with spastic cerebral palsy.
    van der Krogt MM; Doorenbosch CA; Harlaar J
    Gait Posture; 2009 Jun; 29(4):640-4. PubMed ID: 19230672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lower-limb muscle function in healthy young and older adults across a range of walking speeds.
    Lim YP; Lin YC; Pandy MG
    Gait Posture; 2022 May; 94():124-130. PubMed ID: 35305479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-Bodied Kinematics.
    Narang YS; Arelekatti VN; Winter AG
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):754-63. PubMed ID: 26186794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional roles of lower-limb joint moments while walking in water.
    Miyoshi T; Shirota T; Yamamoto S; Nakazawa K; Akai M
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):194-201. PubMed ID: 15621325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscle coordination of mediolateral balance in normal walking.
    Pandy MG; Lin YC; Kim HJ
    J Biomech; 2010 Aug; 43(11):2055-64. PubMed ID: 20451911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Walking speed modifies spasticity effects in gastrocnemius and soleus in cerebral palsy gait.
    van der Krogt MM; Doorenbosch CA; Becher JG; Harlaar J
    Clin Biomech (Bristol, Avon); 2009 Jun; 24(5):422-8. PubMed ID: 19349103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.