These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17659369)

  • 1. Classification of breast masses via nonlinear transformation of features based on a kernel matrix.
    Mu T; Nandi AK; Rangayyan RM
    Med Biol Eng Comput; 2007 Aug; 45(8):769-80. PubMed ID: 17659369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of breast masses using selected shape, edge-sharpness, and texture features with linear and kernel-based classifiers.
    Mu T; Nandi AK; Rangayyan RM
    J Digit Imaging; 2008 Jun; 21(2):153-69. PubMed ID: 18306000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces.
    Chan HP; Sahiner B; Lam KL; Petrick N; Helvie MA; Goodsitt MM; Adler DD
    Med Phys; 1998 Oct; 25(10):2007-19. PubMed ID: 9800710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of mammographic mass characterization using spiculation meausures and morphological features.
    Sahiner B; Chan HP; Petrick N; Helvie MA; Hadjiiski LM
    Med Phys; 2001 Jul; 28(7):1455-65. PubMed ID: 11488579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space.
    Chan HP; Wei D; Helvie MA; Sahiner B; Adler DD; Goodsitt MM; Petrick N
    Phys Med Biol; 1995 May; 40(5):857-76. PubMed ID: 7652012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of breast masses in mammograms by density slicing and texture flow-field analysis.
    Mudigonda NR; Rangayyan RM; Desautels JE
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1215-27. PubMed ID: 11811822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of breast masses in mammograms using genetic programming and feature selection.
    Nandi RJ; Nandi AK; Rangayyan RM; Scutt D
    Med Biol Eng Comput; 2006 Aug; 44(8):683-94. PubMed ID: 16937210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pixel resolution on texture features of breast masses in mammograms.
    Rangayyan RM; Nguyen TM; Ayres FJ; Nandi AK
    J Digit Imaging; 2010 Oct; 23(5):547-53. PubMed ID: 19756865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers.
    Mavroforakis ME; Georgiou HV; Dimitropoulos N; Cavouras D; Theodoridis S
    Artif Intell Med; 2006 Jun; 37(2):145-62. PubMed ID: 16716579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient and texture analysis for the classification of mammographic masses.
    Mudigonda NR; Rangayyan RM; Desautels JE
    IEEE Trans Med Imaging; 2000 Oct; 19(10):1032-43. PubMed ID: 11131493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Usefulness of texture analysis for computerized classification of breast lesions on mammograms.
    Pereira RR; Azevedo Marques PM; Honda MO; Kinoshita SK; Engelmann R; Muramatsu C; Doi K
    J Digit Imaging; 2007 Sep; 20(3):248-55. PubMed ID: 17122993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neighborhood Structural Similarity Mapping for the Classification of Masses in Mammograms.
    Rabidas R; Midya A; Chakraborty J
    IEEE J Biomed Health Inform; 2018 May; 22(3):826-834. PubMed ID: 28622679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. False-positive reduction technique for detection of masses on digital mammograms: global and local multiresolution texture analysis.
    Wei D; Chan HP; Petrick N; Sahiner B; Helvie MA; Adler DD; Goodsitt MM
    Med Phys; 1997 Jun; 24(6):903-14. PubMed ID: 9198026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a high-sensitivity classifier based on a genetic algorithm: application to computer-aided diagnosis.
    Sahiner B; Chan HP; Petrick N; Helvie MA; Goodsitt MM
    Phys Med Biol; 1998 Oct; 43(10):2853-71. PubMed ID: 9814523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-aided characterization of mammographic masses: accuracy of mass segmentation and its effects on characterization.
    Sahiner B; Petrick N; Chan HP; Hadjiiski LM; Paramagul C; Helvie MA; Gurcan MN
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1275-84. PubMed ID: 11811827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal analysis of contours of breast masses in mammograms via the power spectra of their signatures.
    Rangayyan RM; Oloumi F; Nguyen TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6737-40. PubMed ID: 21095828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breast cancer diagnosis: analyzing texture of tissue surrounding microcalcifications.
    Karahaliou AN; Boniatis IS; Skiadopoulos SG; Sakellaropoulos FN; Arikidis NS; Likaki EA; Panayiotakis GS; Costaridou LI
    IEEE Trans Inf Technol Biomed; 2008 Nov; 12(6):731-8. PubMed ID: 19000952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment.
    Zheng Y; Keller BM; Ray S; Wang Y; Conant EF; Gee JC; Kontos D
    Med Phys; 2015 Jul; 42(7):4149-60. PubMed ID: 26133615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary modelling and shape analysis methods for classification of mammographic masses.
    Rangayyan RM; Mudigonda NR; Desautels JE
    Med Biol Eng Comput; 2000 Sep; 38(5):487-96. PubMed ID: 11094803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of border information in the classification of mammographic masses.
    Varela C; Timp S; Karssemeijer N
    Phys Med Biol; 2006 Jan; 51(2):425-41. PubMed ID: 16394348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.