These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17659835)

  • 1. Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor.
    Ahmed Basha C; Bhadrinarayana NS; Anantharaman N; Meera Sheriffa Begum KM
    J Hazard Mater; 2008 Mar; 152(1):71-8. PubMed ID: 17659835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction.
    Hunsom M; Pruksathorn K; Damronglerd S; Vergnes H; Duverneuil P
    Water Res; 2005 Feb; 39(4):610-6. PubMed ID: 15707634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a bio-electrochemical reactor process to direct treatment of metal pickling wastewater containing heavy metals and high strength nitrate.
    Watanabe T; Jin HW; Cho KJ; Kuroda M
    Water Sci Technol; 2004; 50(8):111-8. PubMed ID: 15566194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in natural waters and simulated wastewater.
    Escobar C; Soto-Salazar C; Toral MI
    J Environ Manage; 2006 Dec; 81(4):384-91. PubMed ID: 16616411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study.
    Merzouk B; Gourich B; Sekki A; Madani K; Chibane M
    J Hazard Mater; 2009 May; 164(1):215-22. PubMed ID: 18799259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.
    Pavlović J; Stopić S; Friedrich B; Kamberović Z
    Environ Sci Pollut Res Int; 2007 Nov; 14(7):518-22. PubMed ID: 18062485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.
    Kabdaşli I; Arslan T; Olmez-Hanci T; Arslan-Alaton I; Tünay O
    J Hazard Mater; 2009 Jun; 165(1-3):838-45. PubMed ID: 19046620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology.
    Wang JY; Huang XJ; Kao JC; Stabnikova O
    J Hazard Mater; 2006 Aug; 136(3):532-41. PubMed ID: 16504386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Cu2+ and Zn2+ from model wastewaters by spontaneous reduction-coagulation process in flow conditions.
    Bojic ALj; Bojic D; Andjelkovic T
    J Hazard Mater; 2009 Sep; 168(2-3):813-9. PubMed ID: 19297088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal removal from wastewater using zero-valent iron nanoparticles.
    Chen SY; Chen WH; Shih CJ
    Water Sci Technol; 2008; 58(10):1947-54. PubMed ID: 19039174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal removal from waste waters by ion flotation.
    Polat H; Erdogan D
    J Hazard Mater; 2007 Sep; 148(1-2):267-73. PubMed ID: 17374447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrodialytic remediation of harbour sediment in suspension--evaluation of effects induced by changes in stirring velocity and current density on heavy metal removal and pH.
    Kirkelund GM; Ottosen LM; Villumsen A
    J Hazard Mater; 2009 Sep; 169(1-3):685-90. PubMed ID: 19409702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of pulp and paper industrial wastes to remove heavy metals from metal finishing wastewater.
    Sthiannopkao S; Sreesai S
    J Environ Manage; 2009 Aug; 90(11):3283-9. PubMed ID: 19501952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.
    Maweja K; Mukongo T; Mutombo I
    J Hazard Mater; 2009 May; 164(2-3):856-62. PubMed ID: 18848396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of copper removal from aqueous solutions in a continuous electrochemical cell divided by cellulosic separator.
    Najafpoor AA; Davoudi M; Salmani ER
    Water Sci Technol; 2017 Mar; 75(5-6):1233-1242. PubMed ID: 28272052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous removal of nitrate and heavy metals by iron metal.
    Hao ZW; Xu XH; Jin J; He P; Liu Y; Wang DH
    J Zhejiang Univ Sci B; 2005 May; 6(5):307-10. PubMed ID: 15822139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff.
    Vijayaraghavan K; Teo TT; Balasubramanian R; Joshi UM
    J Hazard Mater; 2009 May; 164(2-3):1019-23. PubMed ID: 18926627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration.
    Khan E; Khaodhir S; Ruangrote D
    Bioresour Technol; 2009 Oct; 100(19):4454-61. PubMed ID: 19450977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.