BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17660450)

  • 1. Photoperiodic and food signals control expression pattern of the clock gene, period, in the linden bug, Pyrrhocoris apterus.
    Dolezel D; Sauman I; Kost'ál V; Hodkova M
    J Biol Rhythms; 2007 Aug; 22(4):335-42. PubMed ID: 17660450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is period gene causally involved in the photoperiodic regulation of reproductive diapause in the linden bug, Pyrrhocoris apterus?
    Dolezel D; Vanecková H; Sauman I; Hodkova M
    J Insect Physiol; 2005 Jun; 51(6):655-9. PubMed ID: 15993130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoperiodic regulation of diapause in linden bugs: are period and Clock genes involved?
    Syrová Z; Dolezel D; Saumann I; Hodková M
    Cell Mol Life Sci; 2003 Nov; 60(11):2510-5. PubMed ID: 14625693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why is the number of days required for induction of adult diapause in the linden bug Pyrrhocoris apterus fewer in the larval than in the adult stage?
    Hodkova M
    J Insect Physiol; 2015 Jun; 77():39-44. PubMed ID: 25891916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males.
    Ikeno T; Numata H; Goto SG
    J Insect Physiol; 2011 Jul; 57(7):935-8. PubMed ID: 21550348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of the circadian clock genes in the bean bug, Riptortus pedestris, and their expression patterns under long- and short-day conditions.
    Ikeno T; Numata H; Goto SG
    Gene; 2008 Aug; 419(1-2):56-61. PubMed ID: 18547745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamism in physiology and gene transcription during reproductive diapause in a heteropteran bug, Pyrrhocoris apterus.
    Kostál V; Tollarová M; Dolezel D
    J Insect Physiol; 2008 Jan; 54(1):77-88. PubMed ID: 17880995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endocrine regulation of non-circadian behavior of circadian genes in insect gut.
    Bajgar A; Dolezel D; Hodkova M
    J Insect Physiol; 2013 Sep; 59(9):881-6. PubMed ID: 23811190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The clock gene period plays an essential role in photoperiodic control of nymphal development in the cricket Modicogryllus siamensis.
    Sakamoto T; Uryu O; Tomioka K
    J Biol Rhythms; 2009 Oct; 24(5):379-90. PubMed ID: 19755583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata.
    Stehlík J; Závodská R; Shimada K; Sauman I; Kostál V
    J Biol Rhythms; 2008 Apr; 23(2):129-39. PubMed ID: 18375862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue signaling pathways in the regulation of life-span and reproduction in females of the linden bug, Pyrrhocoris apterus.
    Hodkova M
    J Insect Physiol; 2008 Feb; 54(2):508-17. PubMed ID: 18206160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris.
    Ikeno T; Numata H; Goto SG
    Biochem Biophys Res Commun; 2011 Jul; 410(3):394-7. PubMed ID: 21669185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial selection for responsiveness to photoperiodic change alters the response to stationary photoperiods in maternal induction of egg diapause in the rice leaf bug Trigonotylus caelestialium.
    Shintani Y
    J Insect Physiol; 2009 Sep; 55(9):818-24. PubMed ID: 19482029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug, Riptortus pedestris.
    Ikeno T; Numata H; Goto SG; Shiga S
    J Exp Biol; 2014 Feb; 217(Pt 3):453-62. PubMed ID: 24198258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus.
    Urbanová V; Bazalová O; Vaněčková H; Dolezel D
    Insect Biochem Mol Biol; 2016 Mar; 70():184-90. PubMed ID: 26826599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of photoperiod and functional clock on male diapause in cryptochrome and pdf mutants in the linden bug Pyrrhocoris apterus.
    Kaniewska MM; Chvalová D; Dolezel D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jun; ():. PubMed ID: 37302092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clock genes period and timeless are rhythmically expressed in brains of newly hatched, photosensitive larvae of the fly, Sarcophaga crassipalpis.
    Kostál V; Závodská R; Denlinger D
    J Insect Physiol; 2009 May; 55(5):408-14. PubMed ID: 19186184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoperiodic control of diapause in Pseudopidorus fasciata (Lepidoptera: Zygaenidae) based on a qualitative time measurement.
    Hua A; Yang D; Wu S; Xue F
    J Insect Physiol; 2005 Nov; 51(11):1261-7. PubMed ID: 16137697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and expressions of two circadian clock genes, period and timeless in the commercial silkmoth, Bombyx mori.
    Iwai S; Fukui Y; Fujiwara Y; Takeda M
    J Insect Physiol; 2006 Jun; 52(6):625-37. PubMed ID: 16626732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus.
    Smykal V; Bajgar A; Provaznik J; Fexova S; Buricova M; Takaki K; Hodkova M; Jindra M; Dolezel D
    Insect Biochem Mol Biol; 2014 Feb; 45():69-76. PubMed ID: 24361539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.