These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 17660572)
1. In vivo functional specificity and homeostasis of Drosophila 14-3-3 proteins. Acevedo SF; Tsigkari KK; Grammenoudi S; Skoulakis EM Genetics; 2007 Sep; 177(1):239-53. PubMed ID: 17660572 [TBL] [Abstract][Full Text] [Related]
2. A third functional isoform enriched in mushroom body neurons is encoded by the Drosophila 14-3-3zeta gene. Messaritou G; Leptourgidou F; Franco M; Skoulakis EM FEBS Lett; 2009 Sep; 583(17):2934-8. PubMed ID: 19665025 [TBL] [Abstract][Full Text] [Related]
3. 14-3-3ε Is required for germ cell migration in Drosophila. Tsigkari KK; Acevedo SF; Skoulakis EM PLoS One; 2012; 7(5):e36702. PubMed ID: 22666326 [TBL] [Abstract][Full Text] [Related]
4. The conserved Myc box 2 and Myc box 3 regions are important, but not essential, for Myc function in vivo. Schwinkendorf D; Gallant P Gene; 2009 May; 436(1-2):90-100. PubMed ID: 19248823 [TBL] [Abstract][Full Text] [Related]
5. Dimerization is essential for 14-3-3zeta stability and function in vivo. Messaritou G; Grammenoudi S; Skoulakis EM J Biol Chem; 2010 Jan; 285(3):1692-700. PubMed ID: 19920133 [TBL] [Abstract][Full Text] [Related]
6. Regulation of cell proliferation and wing development by Drosophila SIN3 and String. Swaminathan A; Pile LA Mech Dev; 2010; 127(1-2):96-106. PubMed ID: 19825413 [TBL] [Abstract][Full Text] [Related]
7. Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity. Shandala T; Woodcock JM; Ng Y; Biggs L; Skoulakis EM; Brooks DA; Lopez AF J Cell Sci; 2011 Jul; 124(Pt 13):2165-74. PubMed ID: 21670199 [TBL] [Abstract][Full Text] [Related]
8. Dynamic expression and cellular localization of the drosophila 14-3-3epsilon during embryonic development. Tien AC; Hsei HY; Chien CT Mech Dev; 1999 Mar; 81(1-2):209-12. PubMed ID: 10330502 [TBL] [Abstract][Full Text] [Related]
9. [Regulation of development of wing venation in Drosophila melanogaster by a network of signalling pathways]. Vaĭsman NIa Ontogenez; 2005; 36(6):422-33. PubMed ID: 16358766 [TBL] [Abstract][Full Text] [Related]
10. Loss- and gain-of-function analysis of the lipid raft proteins Reggie/Flotillin in Drosophila: they are posttranslationally regulated, and misexpression interferes with wing and eye development. Hoehne M; de Couet HG; Stuermer CA; Fischbach KF Mol Cell Neurosci; 2005 Nov; 30(3):326-38. PubMed ID: 16154361 [TBL] [Abstract][Full Text] [Related]
11. Osa, a subunit of the BAP chromatin-remodelling complex, participates in the regulation of gene expression in response to EGFR signalling in the Drosophila wing. Terriente-Félix A; de Celis JF Dev Biol; 2009 May; 329(2):350-61. PubMed ID: 19306864 [TBL] [Abstract][Full Text] [Related]
12. Targeted mutagenesis of the Sap47 gene of Drosophila: flies lacking the synapse associated protein of 47 kDa are viable and fertile. Funk N; Becker S; Huber S; Brunner M; Buchner E BMC Neurosci; 2004 Apr; 5():16. PubMed ID: 15117418 [TBL] [Abstract][Full Text] [Related]
13. PP1beta9C interacts with Trithorax in Drosophila wing development. Rudenko A; Bennett D; Alphey L Dev Dyn; 2004 Oct; 231(2):336-41. PubMed ID: 15366010 [TBL] [Abstract][Full Text] [Related]
14. Several levels of EGF receptor signaling during photoreceptor specification in wild-type, Ellipse, and null mutant Drosophila. Lesokhin AM; Yu SY; Katz J; Baker NE Dev Biol; 1999 Jan; 205(1):129-44. PubMed ID: 9882502 [TBL] [Abstract][Full Text] [Related]
15. Integrative Role of Wei Y; Du J; Zhao Z Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575915 [TBL] [Abstract][Full Text] [Related]
16. Novel guanine nucleotide exchange factor GEFmeso of Drosophila melanogaster interacts with Ral and Rho GTPase Cdc42. Blanke S; Jäckle H FASEB J; 2006 Apr; 20(6):683-91. PubMed ID: 16581976 [TBL] [Abstract][Full Text] [Related]
17. Interkingdom complementation reveals structural conservation and functional divergence of 14-3-3 proteins. Lalle M; Leptourgidou F; Camerini S; Pozio E; Skoulakis EM PLoS One; 2013; 8(10):e78090. PubMed ID: 24147113 [TBL] [Abstract][Full Text] [Related]
18. Proteome Analysis of Drosophila Mutants Identifies a Regulatory Role for 14-3-3ε in Metabolic Pathways. Ng YS; Sorvina A; Bader CA; Weiland F; Lopez AF; Hoffmann P; Shandala T; Brooks DA J Proteome Res; 2017 May; 16(5):1976-1987. PubMed ID: 28365999 [TBL] [Abstract][Full Text] [Related]
19. 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila. Le TP; Vuong LT; Kim AR; Hsu YC; Choi KW Nat Commun; 2016 May; 7():11501. PubMed ID: 27151460 [TBL] [Abstract][Full Text] [Related]
20. Monomeric 14-3-3 protein is sufficient to modulate the activity of the Drosophila slowpoke calcium-dependent potassium channel. Zhou Y; Reddy S; Murrey H; Fei H; Levitan IB J Biol Chem; 2003 Mar; 278(12):10073-80. PubMed ID: 12529354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]