BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17660950)

  • 1. Inhibition of cytosolic and mitochondrial creatine kinase by siRNA in HaCaT- and HeLaS3-cells affects cell viability and mitochondrial morphology.
    Lenz H; Schmidt M; Welge V; Kueper T; Schlattner U; Wallimann T; Elsässer HP; Wittern KP; Wenck H; Staeb F; Blatt T
    Mol Cell Biochem; 2007 Dec; 306(1-2):153-62. PubMed ID: 17660950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of ubiquitous mitochondrial creatine kinase expression in HeLa cells by an antisense oligodeoxynucleotide.
    Enjolras N; Godinot C
    Mol Cell Biochem; 1997 Feb; 167(1-2):113-25. PubMed ID: 9059988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology.
    Wallimann T; Dolder M; Schlattner U; Eder M; Hornemann T; O'Gorman E; Rück A; Brdiczka D
    Biofactors; 1998; 8(3-4):229-34. PubMed ID: 9914824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites.
    Schlattner U; Klaus A; Ramirez Rios S; Guzun R; Kay L; Tokarska-Schlattner M
    Amino Acids; 2016 Aug; 48(8):1751-74. PubMed ID: 27318991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development.
    Ramírez O; Jiménez E
    Int J Dev Neurosci; 2000 Dec; 18(8):815-23. PubMed ID: 11154851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of resistance arteries from BB-creatine kinase and ubiquitous Mt-creatine kinase double knockout mice.
    Taherzadeh Z; van Montfrans GA; Van der Zee CEEM; Streijger F; Bakker ENTP; Brewster LM
    Amino Acids; 2020 Jul; 52(6-7):1033-1041. PubMed ID: 32696177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and performance of an enzyme immunoassay to detect creatine kinase isoenzyme MB activity using anti-mitochondrial creatine kinase monoclonal antibodies.
    Hoshino T; Sakai Y; Yamashita K; Shirahase Y; Sakaguchi K; Asaeda A; Kishi K; Schlattner U; Wallimann T; Yanai M; Kumasaka K
    Scand J Clin Lab Invest; 2009; 69(6):687-95. PubMed ID: 19484658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis.
    Tachikawa M; Fukaya M; Terasaki T; Ohtsuki S; Watanabe M
    Eur J Neurosci; 2004 Jul; 20(1):144-60. PubMed ID: 15245487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hearts of some Antarctic fishes lack mitochondrial creatine kinase.
    O'Brien KM; Mueller IA; Orczewska JI; Dullen KR; Ortego M
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():30-6. PubMed ID: 25151023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral creatine kinase deficiency influences metabolite levels and morphology in the mouse brain: a quantitative in vivo 1H and 31P magnetic resonance study.
    in 't Zandt HJ; Renema WK; Streijger F; Jost C; Klomp DW; Oerlemans F; Van der Zee CE; Wieringa B; Heerschap A
    J Neurochem; 2004 Sep; 90(6):1321-30. PubMed ID: 15341516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-type creatine kinase BB-CK interacts with the Golgi Matrix Protein GM130 in early prophase.
    Bürklen TS; Hirschy A; Wallimann T
    Mol Cell Biochem; 2007 Mar; 297(1-2):53-64. PubMed ID: 17036164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms.
    in 't Zandt HJ; de Groof AJ; Renema WK; Oerlemans FT; Klomp DW; Wieringa B; Heerschap A
    J Physiol; 2003 May; 548(Pt 3):847-58. PubMed ID: 12640020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creatine kinase in human erythrocytes: A genetic anomaly reveals presence of soluble brain-type isoform.
    Kay L; Tokarska-Schlattner M; Quenot-Carrias B; Goudet B; Bugert P; Arnold H; Scheuerbrandt G; Schlattner U
    Blood Cells Mol Dis; 2017 May; 64():33-37. PubMed ID: 28364583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aeromonas caviae alters the cytosolic and mitochondrial creatine kinase activities in experimentally infected silver catfish: Impairment on renal bioenergetics.
    Baldissera MD; Souza CF; Júnior GB; Verdi CM; Moreira KLS; da Rocha MIUM; da Veiga ML; Santos RCV; Vizzotto BS; Baldisserotto B
    Microb Pathog; 2017 Sep; 110():439-443. PubMed ID: 28735082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypothalamic plasticity of neuropeptide Y is lacking in brain-type creatine kinase double knockout mice with defective thermoregulation.
    Van der Zee CEEM
    Eur J Pharmacol; 2013 Nov; 719(1-3):137-144. PubMed ID: 23891845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of creatine kinase isoenzymes in human placenta during early, mid-, and late gestation.
    Thomure MF; Gast MJ; Srivastava N; Payne RM
    J Soc Gynecol Investig; 1996; 3(6):322-7. PubMed ID: 8923416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent.
    Kekelidze T; Khait I; Togliatti A; Benzecry JM; Wieringa B; Holtzman D
    J Neurosci Res; 2001 Dec; 66(5):866-72. PubMed ID: 11746413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility.
    Jost CR; Van Der Zee CE; In 't Zandt HJ; Oerlemans F; Verheij M; Streijger F; Fransen J; Heerschap A; Cools AR; Wieringa B
    Eur J Neurosci; 2002 May; 15(10):1692-706. PubMed ID: 12059977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional coupling of creatine kinases in muscles: species and tissue specificity.
    Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K
    Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of two types of mitochondrial creatine kinase isolated from normal human cardiac muscle and brain tissue.
    Kanemitsu F; Mizushima J; Kageoka T; Okigaki T; Taketa K; Kira S
    Electrophoresis; 2000 Jan; 21(2):266-70. PubMed ID: 10674997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.