BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17661444)

  • 1. Investigation of the C-terminal redox center of high-Mr thioredoxin reductase by protein engineering and semisynthesis.
    Eckenroth BE; Lacey BM; Lothrop AP; Harris KM; Hondal RJ
    Biochemistry; 2007 Aug; 46(33):9472-83. PubMed ID: 17661444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biochemical studies reveal differences in the catalytic mechanisms of mammalian and Drosophila melanogaster thioredoxin reductases.
    Eckenroth BE; Rould MA; Hondal RJ; Everse SJ
    Biochemistry; 2007 Apr; 46(16):4694-705. PubMed ID: 17385893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum.
    Snider GW; Dustin CM; Ruggles EL; Hondal RJ
    Biochemistry; 2014 Jan; 53(3):601-9. PubMed ID: 24400600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No selenium required: reactions catalyzed by mammalian thioredoxin reductase that are independent of a selenocysteine residue.
    Lothrop AP; Ruggles EL; Hondal RJ
    Biochemistry; 2009 Jul; 48(26):6213-23. PubMed ID: 19366212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenium as an electron acceptor during the catalytic mechanism of thioredoxin reductase.
    Lothrop AP; Snider GW; Ruggles EL; Patel AS; Lees WJ; Hondal RJ
    Biochemistry; 2014 Feb; 53(4):654-63. PubMed ID: 24422500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and conformer analysis of a novel redox-active motif, Pro-Ala-Ser-Cys-Cys-Ser, in Drosophila thioredoxin reductase by semiempirical molecular orbital calculation.
    Kuwahara M; Tamura T; Kawamura K; Inagaki K
    Biosci Biotechnol Biochem; 2011; 75(3):516-21. PubMed ID: 21389620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenium in thioredoxin reductase: a mechanistic perspective.
    Lacey BM; Eckenroth BE; Flemer S; Hondal RJ
    Biochemistry; 2008 Dec; 47(48):12810-21. PubMed ID: 18986163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensating for the absence of selenocysteine in high-molecular weight thioredoxin reductases: the electrophilic activation hypothesis.
    Lothrop AP; Snider GW; Flemer S; Ruggles EL; Davidson RS; Lamb AL; Hondal RJ
    Biochemistry; 2014 Feb; 53(4):664-74. PubMed ID: 24490974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium?
    Lothrop AP; Snider GW; Ruggles EL; Hondal RJ
    Biochemistry; 2014 Jan; 53(3):554-65. PubMed ID: 24393022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of an active site mutant of the selenoprotein thioredoxin reductase: the Ser-Cys-Cys-Ser motif of the insect orthologue is not sufficient to replace the Cys-Sec dyad in the mammalian enzyme.
    Johansson L; Arscott LD; Ballou DP; Williams CH; Arnér ES
    Free Radic Biol Med; 2006 Aug; 41(4):649-56. PubMed ID: 16863998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: comparison of selenium and sulfur enzymes.
    Snider GW; Ruggles E; Khan N; Hondal RJ
    Biochemistry; 2013 Aug; 52(32):5472-81. PubMed ID: 23865454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A "Seleno Effect" Differentiates the Roles of Redox Active Cysteine Residues in Plasmodium falciparum Thioredoxin Reductase.
    O'Keefe JP; Dustin CM; Barber D; Snider GW; Hondal RJ
    Biochemistry; 2018 Mar; 57(11):1767-1778. PubMed ID: 29485860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of Glu-469' in the acid-base catalysis of thioredoxin reductase from Drosophila melanogaster.
    Huang HH; Arscott LD; Ballou DP; Williams CH
    Biochemistry; 2008 Dec; 47(48):12769-76. PubMed ID: 18991392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of high Mr thioredoxin reductase from Drosophila melanogaster.
    Bauer H; Massey V; Arscott LD; Schirmer RH; Ballou DP; Williams CH
    J Biol Chem; 2003 Aug; 278(35):33020-8. PubMed ID: 12816954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenocysteine-containing thioredoxin reductase in C. elegans.
    Gladyshev VN; Krause M; Xu XM; Korotkov KV; Kryukov GV; Sun QA; Lee BJ; Wootton JC; Hatfield DL
    Biochem Biophys Res Commun; 1999 Jun; 259(2):244-9. PubMed ID: 10362494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gain of function conferred by selenocysteine: catalytic enhancement of one-electron transfer reactions by thioredoxin reductase.
    Barber DR; Hondal RJ
    Protein Sci; 2019 Jan; 28(1):79-89. PubMed ID: 30052295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity.
    Lee SR; Bar-Noy S; Kwon J; Levine RL; Stadtman TC; Rhee SG
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2521-6. PubMed ID: 10688911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of mitochondrial thioredoxin reductase from C. elegans.
    Lacey BM; Hondal RJ
    Biochem Biophys Res Commun; 2006 Aug; 346(3):629-36. PubMed ID: 16780799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene.
    Gladyshev VN; Jeang KT; Stadtman TC
    Proc Natl Acad Sci U S A; 1996 Jun; 93(12):6146-51. PubMed ID: 8650234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methaneseleninic acid is a substrate for truncated mammalian thioredoxin reductase: implications for the catalytic mechanism and redox signaling.
    Snider G; Grout L; Ruggles EL; Hondal RJ
    Biochemistry; 2010 Dec; 49(48):10329-38. PubMed ID: 21038895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.