These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 17661468)

  • 1. Kinetic analysis of teicoplanin glycosyltransferases and acyltransferase reveal ordered tailoring of aglycone scaffold to reconstitute mature teicoplanin.
    Howard-Jones AR; Kruger RG; Lu W; Tao J; Leimkuhler C; Kahne D; Walsh CT
    J Am Chem Soc; 2007 Aug; 129(33):10082-3. PubMed ID: 17661468
    [No Abstract]   [Full Text] [Related]  

  • 2. Tailoring of glycopeptide scaffolds by the acyltransferases from the teicoplanin and A-40,926 biosynthetic operons.
    Kruger RG; Lu W; Oberthür M; Tao J; Kahne D; Walsh CT
    Chem Biol; 2005 Jan; 12(1):131-40. PubMed ID: 15664522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase.
    Li TL; Huang F; Haydock SF; Mironenko T; Leadlay PF; Spencer JB
    Chem Biol; 2004 Jan; 11(1):107-19. PubMed ID: 15113000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic origin of the chiral recognition of tryptophan on teicoplanin and teicoplanin aglycone stationary phases.
    Haroun M; Ravelet C; Ravel A; Grosset C; Villet A; Peyrin E
    J Sep Sci; 2005 Mar; 28(5):409-20. PubMed ID: 15835728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Post-Assembly Line Tailoring Processes in Teicoplanin Biosynthesis.
    Yushchuk O; Ostash B; Pham TH; Luzhetskyy A; Fedorenko V; Truman AW; Horbal L
    ACS Chem Biol; 2016 Aug; 11(8):2254-64. PubMed ID: 27285718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a deacetylase involved in the maturation of teicoplanin.
    Truman AW; Robinson L; Spencer JB
    Chembiochem; 2006 Nov; 7(11):1670-5. PubMed ID: 17009278
    [No Abstract]   [Full Text] [Related]  

  • 7. Glycopeptide biosynthesis: Dbv21/Orf2 from dbv/tcp gene clusters are N-Ac-Glm teicoplanin pseudoaglycone deacetylases and Orf15 from cep gene cluster is a Glc-1-P thymidyltransferase.
    Ho JY; Huang YT; Wu CJ; Li YS; Tsai MD; Li TL
    J Am Chem Soc; 2006 Oct; 128(42):13694-5. PubMed ID: 17044690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural product glycosyltransferases: properties and applications.
    Williams GJ; Thorson JS
    Adv Enzymol Relat Areas Mol Biol; 2009; 76():55-119. PubMed ID: 18990828
    [No Abstract]   [Full Text] [Related]  

  • 9. Highly efficient chemoenzymatic synthesis of novel branched thiooligosaccharides by substrate direction with glucansucrases.
    Hellmuth H; Hillringhaus L; Höbbel S; Kralj S; Dijkhuizen L; Seibel J
    Chembiochem; 2007 Feb; 8(3):273-6. PubMed ID: 17219452
    [No Abstract]   [Full Text] [Related]  

  • 10. Antibiotic glycosyltransferases.
    Walsh CT; Losey HC; Freel Meyers CL
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):487-92. PubMed ID: 12773141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chapter 12. The power of glycosyltransferases to generate bioactive natural compounds.
    Härle J; Bechthold A
    Methods Enzymol; 2009; 458():309-33. PubMed ID: 19374988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of a thioglycoligase: randomized mutagenesis of the acid-base residue leads to the identification of improved catalysts.
    Müllegger J; Jahn M; Chen HM; Warren RA; Withers SG
    Protein Eng Des Sel; 2005 Jan; 18(1):33-40. PubMed ID: 15790578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of lipoglycopeptide antibiotic deacetylases: implications for the biosynthesis of A40926 and teicoplanin.
    Zou Y; Brunzelle JS; Nair SK
    Chem Biol; 2008 Jun; 15(6):533-45. PubMed ID: 18559264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids.
    Modolo LV; Li L; Pan H; Blount JW; Dixon RA; Wang X
    J Mol Biol; 2009 Oct; 392(5):1292-302. PubMed ID: 19683002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sweetly expanding enzymatic glycodiversification.
    Jakeman DL
    Chem Biol; 2008 Apr; 15(4):307-8. PubMed ID: 18420135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glycosyltransferase UrdGT2 catalyzes both C- and O-glycosidic sugar transfers.
    Dürr C; Hoffmeister D; Wohlert SE; Ichinose K; Weber M; Von Mulert U; Thorson JS; Bechthold A
    Angew Chem Int Ed Engl; 2004 May; 43(22):2962-5. PubMed ID: 15170316
    [No Abstract]   [Full Text] [Related]  

  • 17. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution.
    Williams GJ; Zhang C; Thorson JS
    Nat Chem Biol; 2007 Oct; 3(10):657-62. PubMed ID: 17828251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant glycosyltransferases: their potential as novel biocatalysts.
    Lim EK
    Chemistry; 2005 Sep; 11(19):5486-94. PubMed ID: 15926195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming.
    Walsh C; Freel Meyers CL; Losey HC
    J Med Chem; 2003 Jul; 46(16):3425-36. PubMed ID: 12877577
    [No Abstract]   [Full Text] [Related]  

  • 20. Predictable enzymatic glycosylation.
    Chang CW
    Chem Biol; 2009 Jun; 16(6):579-80. PubMed ID: 19549595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.