These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 17662330)

  • 1. 1-3 connectivity lithium niobate composites for high temperature operation.
    Schmarje N; Kirk KJ; Cochran S
    Ultrasonics; 2007 Dec; 47(1-4):15-22. PubMed ID: 17662330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging with lithium niobate/epoxy composites.
    Schmarje N; Saillant JF; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):439-42. PubMed ID: 15047325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of high performance piezoelectric crystal Pb(Zn1/3Nb2/3)O3-PbTiO3 using PbO flux.
    Jin M; Xu J; Shi M; Wu X; Tong J
    Ultrasonics; 2007 May; 46(2):129-32. PubMed ID: 17320135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New High-Temperature Ultrasonic Transducer for Continuous Inspection.
    Amini MH; Sinclair AN; Coyle TW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):448-55. PubMed ID: 26829787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of piezocrystals for practical configurations with temperature- and pressure-dependent electrical impedance spectroscopy.
    Qiu Z; Sadiq MR; Démoré C; Parker MF; Marin P; Mayne K; Cochran S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1793-803. PubMed ID: 21937310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and simulated performance of lithium niobate 1-3 piezocomposites for 2 MHz non-destructive testing applications.
    Kirk KJ; Schmarje N
    Ultrasonics; 2013 Jan; 53(1):185-90. PubMed ID: 22784707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and modeling of inversion layer ultrasonic transducers using LiNbO3 single crystal.
    Zhou QF; Cannata J; Kirk Shung K
    Ultrasonics; 2006 Dec; 44 Suppl 1():e607-11. PubMed ID: 16797635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of triangular pillar geometry on high- frequency piezocomposite transducers.
    Yin J; Lee M; Brown J; Cherin E; Foster F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):957-68. PubMed ID: 20378458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the properties of tonpilz transducers fabricated with 001 fiber-textured lead magnesium niobate-lead titanate ceramic and single crystals.
    Brosnan KH; Messing GL; Markley DC; Meyer RJ
    J Acoust Soc Am; 2009 Nov; 126(5):2257-65. PubMed ID: 19894807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-of-the-Art and Practical Guide to Ultrasonic Transducers for Harsh Environments Including Temperatures above 2120 °F (1000 °C) and Neutron Flux above 10
    Tittmann BR; Batista CFG; Trivedi YP; Lissenden Iii CJ; Reinhardt BT
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31683921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing signal to noise ratio by fine-tuning tapers of cladded/uncladded buffer rods in ultrasonic time domain reflectometry in smelters.
    Viumdal H; Mylvaganam S
    Ultrasonics; 2014 Mar; 54(3):894-904. PubMed ID: 24268177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffraction in the reflective SAW tags.
    Sveshnikov B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):133-9. PubMed ID: 20040437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz polariton propagation in patterned materials.
    Stoyanov NS; Ward DW; Feurer T; Nelson KA
    Nat Mater; 2002 Oct; 1(2):95-8. PubMed ID: 12618821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium niobate transducers for MRI-guided ultrasonic microsurgery.
    Kotopoulis S; Wang H; Cochran S; Postema M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Aug; 58(8):1570-6. PubMed ID: 21859576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications.
    Chen Y; Lam KH; Zhou D; Yue Q; Yu Y; Wu J; Qiu W; Sun L; Zhang C; Luo H; Chan HL; Dai J
    Sensors (Basel); 2014 Jul; 14(8):13730-58. PubMed ID: 25076222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the thermal dimensional stability of flexible polymer composite backing materials for ultrasound transducers.
    State M; Brands PJ; van de Vosse FN
    Ultrasonics; 2010 Apr; 50(4-5):458-66. PubMed ID: 19897218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical and experimental investigation of kerf depth effect on high-frequency phased array transducer.
    Zhang JY; Xu WJ; Carlier J; Ji XM; Queste S; Nongaillard B; Huang YP
    Ultrasonics; 2012 Feb; 52(2):223-9. PubMed ID: 21907378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores.
    Lee J; Orilall MC; Warren SC; Kamperman M; DiSalvo FJ; Wiesner U
    Nat Mater; 2008 Mar; 7(3):222-8. PubMed ID: 18223653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-temperature piezoelectric single crystal ReCa(4)O(BO(3))(3) for sensor applications.
    Zhang S; Fei Y; Frantz E; Snyder DW; Chai BH; Shrout TR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Dec; 55(12):2703-8. PubMed ID: 19126494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active fiber composites for the generation of Lamb waves.
    Birchmeier M; Gsell D; Juon M; Brunner AJ; Paradies R; Dual J
    Ultrasonics; 2009 Jan; 49(1):73-82. PubMed ID: 18621408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.