These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 17662336)
1. The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium. Xiong J; He Z; Liu D; Mahmood Q; Yang X Chemosphere; 2008 Jan; 70(3):489-94. PubMed ID: 17662336 [TBL] [Abstract][Full Text] [Related]
2. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. Zhang X; Lin L; Chen M; Zhu Z; Yang W; Chen B; Yang X; An Q J Hazard Mater; 2012 Aug; 229-230():361-70. PubMed ID: 22749969 [TBL] [Abstract][Full Text] [Related]
3. Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. Li WC; Ye ZH; Wong MH J Exp Bot; 2007; 58(15-16):4173-82. PubMed ID: 18039737 [TBL] [Abstract][Full Text] [Related]
4. Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. Liu D; Li TQ; Jin XF; Yang XE; Islam E; Mahmood Q J Integr Plant Biol; 2008 Feb; 50(2):129-40. PubMed ID: 18713434 [TBL] [Abstract][Full Text] [Related]
5. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. Liu D; Islam E; Li T; Yang X; Jin X; Mahmood Q J Hazard Mater; 2008 May; 153(1-2):114-22. PubMed ID: 17904736 [TBL] [Abstract][Full Text] [Related]
6. Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Zhang Z; Gao X; Qiu B Phytochemistry; 2008 Feb; 69(4):911-8. PubMed ID: 18023461 [TBL] [Abstract][Full Text] [Related]
7. Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Deng DM; Shu WS; Zhang J; Zou HL; Lin Z; Ye ZH; Wong MH Environ Pollut; 2007 May; 147(2):381-6. PubMed ID: 16828210 [TBL] [Abstract][Full Text] [Related]
8. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Fritioff A; Greger M Chemosphere; 2006 Apr; 63(2):220-7. PubMed ID: 16213560 [TBL] [Abstract][Full Text] [Related]
9. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
10. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants. Sinha S; Gupta AK Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293 [TBL] [Abstract][Full Text] [Related]
11. Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Sun Q; Ye ZH; Wang XR; Wong MH Phytochemistry; 2005 Nov; 66(21):2549-56. PubMed ID: 16225897 [TBL] [Abstract][Full Text] [Related]
12. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? January MC; Cutright TJ; Van Keulen H; Wei R Chemosphere; 2008 Jan; 70(3):531-7. PubMed ID: 17697697 [TBL] [Abstract][Full Text] [Related]
13. Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Zhang X; Lin L; Zhu Z; Yang X; Wang Y; An Q Int J Phytoremediation; 2013; 15(1):51-64. PubMed ID: 23487985 [TBL] [Abstract][Full Text] [Related]
14. Interaction of Cd/Zn hyperaccumulating plant (Sedum alfredii) and rhizosphere bacteria on metal uptake and removal of phenanthrene. Li WC; Wong MH J Hazard Mater; 2012 Mar; 209-210():421-33. PubMed ID: 22309655 [TBL] [Abstract][Full Text] [Related]
15. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Li Z; Wu L; Hu P; Luo Y; Christie P J Hazard Mater; 2013 Oct; 261():332-41. PubMed ID: 23959253 [TBL] [Abstract][Full Text] [Related]
16. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. Jin X; Yang X; Islam E; Liu D; Mahmood Q J Hazard Mater; 2008 Aug; 156(1-3):387-97. PubMed ID: 18242844 [TBL] [Abstract][Full Text] [Related]
17. Phytotreatment of sewage sludge contaminated by heavy metals and PAHs by co-planting Sedum alfredii and Alocasia marorrhiza. Qiu JR; Guo XF; Cai QY; Liu W; Zhang MW; Wei ZB; Wu QT Int J Phytoremediation; 2014; 16(1):1-13. PubMed ID: 24912211 [TBL] [Abstract][Full Text] [Related]
18. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Wang K; Huang H; Zhu Z; Li T; He Z; Yang X; Alva A Int J Phytoremediation; 2013; 15(3):283-98. PubMed ID: 23488013 [TBL] [Abstract][Full Text] [Related]
19. Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. Deng DM; Deng JC; Li JT; Zhang J; Hu M; Lin Z; Liao B J Integr Plant Biol; 2008 Jun; 50(6):691-8. PubMed ID: 18713409 [TBL] [Abstract][Full Text] [Related]
20. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Wu FY; Ye ZH; Wu SC; Wong MH Planta; 2007 Nov; 226(6):1363-78. PubMed ID: 17624548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]