These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

669 related articles for article (PubMed ID: 17662477)

  • 1. Science, policy, and trends of metals risk assessment at EPA: how understanding metals bioavailability has changed metals risk assessment at US EPA.
    Reiley MC
    Aquat Toxicol; 2007 Aug; 84(2):292-8. PubMed ID: 17662477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Framework for metals risk assessment.
    Fairbrother A; Wenstel R; Sappington K; Wood W
    Ecotoxicol Environ Saf; 2007 Oct; 68(2):145-227. PubMed ID: 17889701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scientific issues in the U.S. EPA Framework for Metals Risk Assessment.
    Bradham K; Wentsel R
    J Toxicol Environ Health A; 2010; 73(2):108-13. PubMed ID: 20077282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for deriving pesticide aquatic life criteria.
    TenBrook PL; Tjeerdema RS; Hann P; Karkoski J
    Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration.
    DeForest DK; Brix KV; Adams WJ
    Aquat Toxicol; 2007 Aug; 84(2):236-46. PubMed ID: 17673306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle based risk assessment of recycled materials in roadway construction.
    Carpenter AC; Gardner KH; Fopiano J; Benson CH; Edil TB
    Waste Manag; 2007; 27(10):1458-64. PubMed ID: 17499986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A procedure for setting environmentally safe total maximum daily loads (TMDLs) for selenium.
    Lemly AD
    Ecotoxicol Environ Saf; 2002 Jun; 52(2):123-7. PubMed ID: 12061828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Biotic Ligand Model relative to other site-specific criteria derivation methods for copper in surface waters with elevated hardness.
    Van Genderen E; Gensemer R; Smith C; Santore R; Ryan A
    Aquat Toxicol; 2007 Aug; 84(2):279-91. PubMed ID: 17681387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the hazard quotient method for risk assessment of selenium.
    Lemly AD
    Ecotoxicol Environ Saf; 1996 Nov; 35(2):156-62. PubMed ID: 8950538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting acute copper toxicity to valve closure behavior in the freshwater clam Corbicula fluminea supports the biotic ligand model.
    Liao CM; Jou LJ; Lin CM; Chiang KC; Yeh CH; Chou BY
    Environ Toxicol; 2007 Jun; 22(3):295-307. PubMed ID: 17497636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas).
    Meyer JS; Boese CJ; Morris JM
    Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of the bioavailability and aquatic toxicity attributed to ambient copper concentrations in surface waters from several parts of the world.
    Van Genderen E; Adams W; Cardwell R; van Sprang P; Arnold R; Santore R; Rodriguez P
    Integr Environ Assess Manag; 2008 Oct; 4(4):416-24. PubMed ID: 18598100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk assessment and risk management of noncriteria pollutants.
    Lee SD
    Toxicol Ind Health; 1990 Oct; 6(5):245-55. PubMed ID: 1670281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Update of potency factors for asbestos-related lung cancer and mesothelioma.
    Berman DW; Crump KS
    Crit Rev Toxicol; 2008; 38 Suppl 1():1-47. PubMed ID: 18671157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Health assessment of phosgene: approaches for derivation of reference concentration.
    Gift JS; McGaughy R; Singh DV; Sonawane B
    Regul Toxicol Pharmacol; 2008 Jun; 51(1):98-107. PubMed ID: 18440110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal accumulation in hot water tanks in a region experiencing coal waste pollution and comparison between regional water systems.
    Wigginton A; McSpirit S; Sims CD
    Bull Environ Contam Toxicol; 2007 Oct; 79(4):405-9. PubMed ID: 17846700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A framework for assessing the impact of land use policy on community exposure to air toxics.
    Willis MR; Keller AA
    J Environ Manage; 2007 Apr; 83(2):213-27. PubMed ID: 16842900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting copper toxicity in estuarine and marine waters using the Biotic Ligand Model.
    Arnold WR; Santore RC; Cotsifas JS
    Mar Pollut Bull; 2005 Dec; 50(12):1634-40. PubMed ID: 16040053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper and zinc water quality standards under the EU Water Framework Directive: the use of a tiered approach to estimate the levels of failure.
    Comber SD; Merrington G; Sturdy L; Delbeke K; van Assche F
    Sci Total Environ; 2008 Sep; 403(1-3):12-22. PubMed ID: 18599110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model.
    Hatano A; Shoji R
    Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.