These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17662656)

  • 21. Antigenic variation with a twist--the Borrelia story.
    Norris SJ
    Mol Microbiol; 2006 Jun; 60(6):1319-22. PubMed ID: 16796669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion.
    Brayton KA; Palmer GH; Lundgren A; Yi J; Barbet AF
    Mol Microbiol; 2002 Mar; 43(5):1151-9. PubMed ID: 11918803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antigenic variation of surface proteins of Borrelia species.
    Barbour AG
    Rev Infect Dis; 1988; 10 Suppl 2():S399-402. PubMed ID: 3055207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins.
    Brayton KA; Kappmeyer LS; Herndon DR; Dark MJ; Tibbals DL; Palmer GH; McGuire TC; Knowles DP
    Proc Natl Acad Sci U S A; 2005 Jan; 102(3):844-9. PubMed ID: 15618402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cis-acting DNA elements flanking the variable major protein expression site of Borrelia hermsii are required for murine persistence.
    James AE; Rogovskyy AS; Crowley MA; Bankhead T
    Microbiologyopen; 2018 Jun; 7(3):e00569. PubMed ID: 29250931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential expression of the tick protective antigen subolesin in anaplasma marginale- and A. phagocytophilum-infected host cells.
    de la Fuente J; Blouin EF; Manzano-Roman R; Naranjo V; Almazán C; Pérez de la Lastra JM; Zivkovic Z; Massung RF; Jongejan F; Kocan KM
    Ann N Y Acad Sci; 2008 Dec; 1149():27-35. PubMed ID: 19120168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale.
    de la Fuente J; Blouin EF; Manzano-Roman R; Naranjo V; Almazán C; Pérez de la Lastra JM; Zivkovic Z; Jongejan F; Kocan KM
    Genomics; 2007 Dec; 90(6):712-22. PubMed ID: 17964755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antigenic variation in vector-borne pathogens.
    Barbour AG; Restrepo BI
    Emerg Infect Dis; 2000; 6(5):449-57. PubMed ID: 10998374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 'Nothing is permanent but change'- antigenic variation in persistent bacterial pathogens.
    Palmer GH; Bankhead T; Lukehart SA
    Cell Microbiol; 2009 Dec; 11(12):1697-705. PubMed ID: 19709057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA metabolism and genetic diversity in Trypanosomes.
    Machado CR; Augusto-Pinto L; McCulloch R; Teixeira SM
    Mutat Res; 2006 Jan; 612(1):40-57. PubMed ID: 16040270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Induced immune response of DNA vaccine encoding an association MSP1a, MSP1b, and MSP5 antigens of Anaplasma marginale.
    Kano FS; Tamekuni K; Coelho AL; Garcia JL; Vidotto O; Itano EN; Vidotto MC
    Vaccine; 2008 Jun; 26(27-28):3522-7. PubMed ID: 18502005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nuclear architecture, genome and chromatin organisation in Trypanosoma brucei.
    Ersfeld K
    Res Microbiol; 2011; 162(6):626-36. PubMed ID: 21392575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maintenance of antibody to pathogen epitopes generated by segmental gene conversion is highly dynamic during long-term persistent infection.
    Zhuang Y; Futse JE; Brown WC; Brayton KA; Palmer GH
    Infect Immun; 2007 Nov; 75(11):5185-90. PubMed ID: 17785476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of a vmp pseudogene in Borrelia hermsii: an alternate mechanism of antigenic variation during relapsing fever.
    Restrepo BI; Carter CJ; Barbour AG
    Mol Microbiol; 1994 Jul; 13(2):287-99. PubMed ID: 7984108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of gene expression and genetic manipulation in the Trypanosomatidae.
    Teixeira SM; daRocha WD
    Genet Mol Res; 2003 Mar; 2(1):148-58. PubMed ID: 12917811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expansion of variant diversity associated with a high prevalence of pathogen strain superinfection under conditions of natural transmission.
    Ueti MW; Tan Y; Broschat SL; Castañeda Ortiz EJ; Camacho-Nuez M; Mosqueda JJ; Scoles GA; Grimes M; Brayton KA; Palmer GH
    Infect Immun; 2012 Jul; 80(7):2354-60. PubMed ID: 22585962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variable antigen genes of the relapsing fever agent Borrelia hermsii are activated by promoter addition.
    Barbour AG; Burman N; Carter CJ; Kitten T; Bergström S
    Mol Microbiol; 1991 Feb; 5(2):489-93. PubMed ID: 2041480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene conversion and concerted evolution in bacterial genomes.
    Santoyo G; Romero D
    FEMS Microbiol Rev; 2005 Apr; 29(2):169-83. PubMed ID: 15808740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tandem insertion sequence-like elements define the expression site for variable antigen genes of Borrelia hermsii.
    Barbour AG; Carter CJ; Burman N; Freitag CS; Garon CF; Bergström S
    Infect Immun; 1991 Jan; 59(1):390-7. PubMed ID: 1987053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superinfection as a driver of genomic diversification in antigenically variant pathogens.
    Futse JE; Brayton KA; Dark MJ; Knowles DP; Palmer GH
    Proc Natl Acad Sci U S A; 2008 Feb; 105(6):2123-7. PubMed ID: 18252822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.