These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17663121)

  • 1. Incubation of excised apothecia enhances ascus maturation of Sclerotinia sclerotiorum.
    Wu BM; Peng YL; Qin QM; Subbarao KV
    Mycologia; 2007; 99(1):33-41. PubMed ID: 17663121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homothallism in Sclerotinia minor.
    Ekins M; Aitken EA; Coulter KC
    Mycol Res; 2006 Oct; 110(Pt 10):1193-9. PubMed ID: 17015000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Temperature on Apothecial Longevity and Ascospore Discharge by Apothecia of Monilinia vaccinii-corymbosi.
    Wharton PS; Schilder AC
    Plant Dis; 2005 Apr; 89(4):397-403. PubMed ID: 30795456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The C2H2 Transcription Factor SsZFH1 Regulates the Size, Number, and Development of Apothecia in
    Liu L; Lyu X; Pan Z; Wang Q; Mu W; Benny U; Rollins JA; Pan H
    Phytopathology; 2022 Jul; 112(7):1476-1485. PubMed ID: 35021860
    [No Abstract]   [Full Text] [Related]  

  • 5. Spatiotemporal Distribution Pattern of Sclerotinia sclerotiorum Apothecia is Modulated by Canopy Closure and Soil Temperature in an Irrigated Soybean Field.
    Fall ML; Willbur JF; Smith DL; Byrne AM; Chilvers MI
    Plant Dis; 2018 Sep; 102(9):1794-1802. PubMed ID: 30125202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of soil temperature, moisture, and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor.
    Wu BM; Subbarao KV
    Phytopathology; 2008 Oct; 98(10):1144-52. PubMed ID: 18943461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Germination of Sclerotinia minor and S. sclerotiorum Sclerotia Under Various Soil Moisture and Temperature Combinations.
    Hao JJ; Subbarao KV; Duniway JM
    Phytopathology; 2003 Apr; 93(4):443-50. PubMed ID: 18944359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. White Mold of Houndstongue (Cynoglossum officinale) Caused by Sclerotinia sclerotiorum in Canada.
    Huang HC; Erickson RS; Van Hezewijk B; De Clerck-Floate R
    Plant Dis; 2005 Sep; 89(9):1013. PubMed ID: 30786648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascospore release and survival in Sclerotinia sclerotiorum.
    Clarkson JP; Staveley J; Phelps K; Young CS; Whipps JM
    Mycol Res; 2003 Feb; 107(Pt 2):213-22. PubMed ID: 12747333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biological and epidemiological characteristics of the pathogen of hypertrophy sorosis scleroteniosis, Ciboria shiraiana].
    Lü R; Zhao A; Yu J; Wang C; Liu C; Cai Y; Yu M
    Wei Sheng Wu Xue Bao; 2017 Mar; 57(3):388-98. PubMed ID: 29756437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-developing ascospores in apothecia of asexually reproducing lichen-forming fungi.
    Molina MC; Divakar PK; Zhang N; González N; Struwe L
    Int Microbiol; 2013 Sep; 16(3):145-55. PubMed ID: 24568030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructure of the ascospore formation of Arthroderma simii.
    Ito H; Hanyaku H; Harada T; Mochizuki T; Tanaka S
    Mycoses; 1998; 41(3-4):133-7. PubMed ID: 9670765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light, Temperature, and Moisture Effects on Apothecium Production of Sclerotinia sclerotiorum.
    Sun P; Yang XB
    Plant Dis; 2000 Dec; 84(12):1287-1293. PubMed ID: 30831869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-to-one segregation from reciprocal translocation quadrivalents in Neurospora and its bearing on the interpretation of spore-abortion patterns in unordered asci.
    Perkins DD; Raju NB
    Genome; 1995 Aug; 38(4):661-72. PubMed ID: 7672602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascospore Inoculum Density and Characterization of Components of Partial Resistance to Sclerotinia sclerotiorum in Soybean.
    Huzar-Novakowiski J; Dorrance AE
    Plant Dis; 2018 Jul; 102(7):1326-1333. PubMed ID: 30673564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron micrography study of the asci and ascospores of Metschnikowia Kamienski.
    Talens LT; Miller MW; Miranda M
    J Bacteriol; 1973 Jul; 115(1):316-22. PubMed ID: 4717520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ophiostoma mitovirus 3a , ascorbic acid, glutathione, and photoperiod affect the development of stromata and apothecia by Sclerotinia homoeocarpa.
    Orshinsky AM; Boland GJ
    Can J Microbiol; 2011 May; 57(5):398-407. PubMed ID: 21539495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytological studies reveal high variation in ascospore number and shape and conidia produced directly from ascospores in
    Du XH; Wang SY; Ryberg M; Guo YJ; Wei JY; Pfister DH; Johannesson H
    Front Microbiol; 2023; 14():1286501. PubMed ID: 38045031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First Report of Sclerotinia Rot on Blueberry Caused by Sclerotinia sclerotiorum in Argentina.
    Perez BA; Farinon OM; Berretta MF
    Plant Dis; 2011 Jun; 95(6):774. PubMed ID: 30731920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis.
    Doughan B; Rollins JA
    Fungal Biol; 2016 Sep; 120(9):1105-17. PubMed ID: 27567717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.