These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 17663246)

  • 1. Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture.
    Kulkarni DP; Das DK; Patil SL
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2318-22. PubMed ID: 17663246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid).
    Kulkarni DP; Das DK; Chukwu GA
    J Nanosci Nanotechnol; 2006 Apr; 6(4):1150-4. PubMed ID: 16736780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of nanoparticle concentration on thermo-physical properties of CuO-propylene glycol nanofluids.
    Suganthi KS; Radhakrishnan AK; Anusha N; Rajan KS
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4602-7. PubMed ID: 24738436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on the effects of temperature and volume fraction on thermal conductivity of copper oxide nanofluid.
    Jwo CS; Chang H; Teng TP; Kao MJ; Guo YT
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2161-6. PubMed ID: 17655010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exfoliation of copper hydroxysalt in water and the conversion of the exfoliated layers to cupric and cuprous oxide nanoparticles.
    Nethravathi C; Machado J; Gautam UK; Avadhani GS; Rajamathi M
    Nanoscale; 2012 Jan; 4(2):496-501. PubMed ID: 22095211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of electrokinetic properties of nanofluids.
    Murshed SM; Leong KC; Yang C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5966-71. PubMed ID: 19198333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile aqueous-phase synthesis of uniform palladium nanoparticles of various shapes and sizes.
    Piao Y; Jang Y; Shokouhimehr M; Lee IS; Hyeon T
    Small; 2007 Feb; 3(2):255-60. PubMed ID: 17230590
    [No Abstract]   [Full Text] [Related]  

  • 8. Anisotropically phase-separated biphasic particles.
    Teranishi T
    Small; 2006 May; 2(5):596-8. PubMed ID: 17193093
    [No Abstract]   [Full Text] [Related]  

  • 9. Nanocarbon nanofluids: morphology and nanostructure comparisons.
    Vander Wal RL; Mozes SD; Pushkarev V
    Nanotechnology; 2009 Mar; 20(10):105702. PubMed ID: 19417530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties.
    Bourlinos AB; Stassinopoulos A; Anglos D; Herrera R; Anastasiadis SH; Petridis D; Giannelis EP
    Small; 2006 Apr; 2(4):513-6. PubMed ID: 17193077
    [No Abstract]   [Full Text] [Related]  

  • 11. Fabrication of colloidal crystal beads by a drop-breaking technique and their application as bioassays.
    Sun C; Zhao XW; Zhao YJ; Zhu R; Gu ZZ
    Small; 2008 May; 4(5):592-6. PubMed ID: 18431722
    [No Abstract]   [Full Text] [Related]  

  • 12. Synthesis of complex shape gold nanoparticles in water-methanol mixtures.
    Stanishevsky AV; Williamson H; Yockell-Lelievre H; Rast L; Ritcey AM
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2013-7. PubMed ID: 17025117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-objects on a round trip from water to organics in a polymeric ionic liquid vehicle.
    Marcilla R; Curri ML; Cozzoli PD; Martínez MT; Loinaz I; Grande H; Pomposo JA; Mecerreyes D
    Small; 2006 Apr; 2(4):507-12. PubMed ID: 17193076
    [No Abstract]   [Full Text] [Related]  

  • 14. Preparation and Thermo-Physical Properties of Fe2O3-Propylene Glycol Nanofluids.
    Shylaja A; Manikandan S; Suganthi KS; Rajan KS
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1653-9. PubMed ID: 26353708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization.
    Lou XW; Yuan C; Archer LA
    Small; 2007 Feb; 3(2):261-5. PubMed ID: 17199250
    [No Abstract]   [Full Text] [Related]  

  • 16. Three-dimensional sequential self-assembly of microscale objects.
    Onoe H; Matsumoto K; Shimoyama I
    Small; 2007 Aug; 3(8):1383-9. PubMed ID: 17594683
    [No Abstract]   [Full Text] [Related]  

  • 17. Lyotropic liquid-crystalline solutions of high-concentration dispersions of single-walled carbon nanotubes with conjugated polymers.
    Lee HW; You W; Barman S; Hellstrom S; LeMieux MC; Oh JH; Liu S; Fujiwara T; Wang WM; Chen B; Jin YW; Kim JM; Bao Z
    Small; 2009 May; 5(9):1019-24. PubMed ID: 19291730
    [No Abstract]   [Full Text] [Related]  

  • 18. Heteroepitaxial growth of nanoscale oxide shell/fiber superstructures by mild hydrothermal processes.
    Chen CH; Jin L; Espinal AE; Firliet BT; Xu L; Aindow M; Joesten R; Suib SL
    Small; 2010 May; 6(9):988-92. PubMed ID: 20440703
    [No Abstract]   [Full Text] [Related]  

  • 19. Surface patterning: Self-assembly works for superlattices.
    Ortega JE; de Abajo FJ
    Nat Nanotechnol; 2007 Oct; 2(10):601-2. PubMed ID: 18654383
    [No Abstract]   [Full Text] [Related]  

  • 20. Nanocrystalline formation in immiscible Cu-Mo system subjected to mechanical alloying.
    Lee CH; Lee SH
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4057-60. PubMed ID: 18047118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.