These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 17663280)
1. Supercritical fluid processing of drug nanoparticles in stable suspension. Pathak P; Meziani MJ; Desai T; Foster C; Diaz JA; Sun YP J Nanosci Nanotechnol; 2007 Jul; 7(7):2542-5. PubMed ID: 17663280 [TBL] [Abstract][Full Text] [Related]
2. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Thote AJ; Gupta RB Nanomedicine; 2005 Mar; 1(1):85-90. PubMed ID: 17292062 [TBL] [Abstract][Full Text] [Related]
3. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production. Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656 [TBL] [Abstract][Full Text] [Related]
4. Nanosizing drug particles in supercritical fluid processing. Pathak P; Meziani MJ; Desai T; Sun YP J Am Chem Soc; 2004 Sep; 126(35):10842-3. PubMed ID: 15339159 [TBL] [Abstract][Full Text] [Related]
5. Critical size of crystalline ZrO(2) nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol. Becker J; Hald P; Bremholm M; Pedersen JS; Chevallier J; Iversen SB; Iversen BB ACS Nano; 2008 May; 2(5):1058-68. PubMed ID: 19206504 [TBL] [Abstract][Full Text] [Related]
6. Facile aqueous-phase synthesis of uniform palladium nanoparticles of various shapes and sizes. Piao Y; Jang Y; Shokouhimehr M; Lee IS; Hyeon T Small; 2007 Feb; 3(2):255-60. PubMed ID: 17230590 [No Abstract] [Full Text] [Related]
7. A thermal study on the structural changes of bimetallic ZrO2-modified TiO2 nanotubes synthesized using supercritical CO2. Lucky RA; Charpentier PA Nanotechnology; 2009 May; 20(19):195601. PubMed ID: 19420640 [TBL] [Abstract][Full Text] [Related]
8. Lyotropic liquid-crystalline solutions of high-concentration dispersions of single-walled carbon nanotubes with conjugated polymers. Lee HW; You W; Barman S; Hellstrom S; LeMieux MC; Oh JH; Liu S; Fujiwara T; Wang WM; Chen B; Jin YW; Kim JM; Bao Z Small; 2009 May; 5(9):1019-24. PubMed ID: 19291730 [No Abstract] [Full Text] [Related]
9. Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Yasuji T; Takeuchi H; Kawashima Y Adv Drug Deliv Rev; 2008 Feb; 60(3):388-98. PubMed ID: 18068261 [TBL] [Abstract][Full Text] [Related]
10. Supercritical fluid technology: a promising approach in pharmaceutical research. Girotra P; Singh SK; Nagpal K Pharm Dev Technol; 2013 Feb; 18(1):22-38. PubMed ID: 23036159 [TBL] [Abstract][Full Text] [Related]
11. Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties. Bourlinos AB; Stassinopoulos A; Anglos D; Herrera R; Anastasiadis SH; Petridis D; Giannelis EP Small; 2006 Apr; 2(4):513-6. PubMed ID: 17193077 [No Abstract] [Full Text] [Related]
12. In vitro studies on liposomal amphotericin B obtained by supercritical carbon dioxide-mediated process. Kadimi US; Balasubramanian DR; Ganni UR; Balaraman M; Govindarajulu V Nanomedicine; 2007 Dec; 3(4):273-80. PubMed ID: 17962084 [TBL] [Abstract][Full Text] [Related]
13. Measurement of dispersion stability of surface-modified nanosized carbon black in various liquids. Jang HS; Park DW; Shim SE J Nanosci Nanotechnol; 2007 Nov; 7(11):3827-9. PubMed ID: 18047068 [TBL] [Abstract][Full Text] [Related]
14. Rapid synthesis of cubic Pt nanoparticles and their use for the preparation of Pt nanoagglomerates. Hu X; Wang T; Dong S J Nanosci Nanotechnol; 2006 Jul; 6(7):2056-61. PubMed ID: 17025124 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous production and co-mixing of microparticles of nevirapine with excipients by supercritical antisolvent method for dissolution enhancement. Sanganwar GP; Sathigari S; Babu RJ; Gupta RB Eur J Pharm Sci; 2010 Jan; 39(1-3):164-74. PubMed ID: 19961931 [TBL] [Abstract][Full Text] [Related]
16. Nano-objects on a round trip from water to organics in a polymeric ionic liquid vehicle. Marcilla R; Curri ML; Cozzoli PD; MartÃnez MT; Loinaz I; Grande H; Pomposo JA; Mecerreyes D Small; 2006 Apr; 2(4):507-12. PubMed ID: 17193076 [No Abstract] [Full Text] [Related]
18. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. Thakur R; Gupta RB Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406 [TBL] [Abstract][Full Text] [Related]
19. Nanostructured microspheres produced by supercritical fluid extraction of emulsions. Della Porta G; Reverchon E Biotechnol Bioeng; 2008 Aug; 100(5):1020-33. PubMed ID: 18383122 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of TiO2-Au composites by titania-nanorod-assisted generation of gold nanoparticles at aqueous/nonpolar interfaces. Cozzoli PD; Curri ML; Giannini C; Agostiano A Small; 2006 Mar; 2(3):413-21. PubMed ID: 17193061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]