BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17663280)

  • 1. Supercritical fluid processing of drug nanoparticles in stable suspension.
    Pathak P; Meziani MJ; Desai T; Foster C; Diaz JA; Sun YP
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2542-5. PubMed ID: 17663280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.
    Thote AJ; Gupta RB
    Nanomedicine; 2005 Mar; 1(1):85-90. PubMed ID: 17292062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosizing drug particles in supercritical fluid processing.
    Pathak P; Meziani MJ; Desai T; Sun YP
    J Am Chem Soc; 2004 Sep; 126(35):10842-3. PubMed ID: 15339159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical size of crystalline ZrO(2) nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol.
    Becker J; Hald P; Bremholm M; Pedersen JS; Chevallier J; Iversen SB; Iversen BB
    ACS Nano; 2008 May; 2(5):1058-68. PubMed ID: 19206504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile aqueous-phase synthesis of uniform palladium nanoparticles of various shapes and sizes.
    Piao Y; Jang Y; Shokouhimehr M; Lee IS; Hyeon T
    Small; 2007 Feb; 3(2):255-60. PubMed ID: 17230590
    [No Abstract]   [Full Text] [Related]  

  • 7. A thermal study on the structural changes of bimetallic ZrO2-modified TiO2 nanotubes synthesized using supercritical CO2.
    Lucky RA; Charpentier PA
    Nanotechnology; 2009 May; 20(19):195601. PubMed ID: 19420640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lyotropic liquid-crystalline solutions of high-concentration dispersions of single-walled carbon nanotubes with conjugated polymers.
    Lee HW; You W; Barman S; Hellstrom S; LeMieux MC; Oh JH; Liu S; Fujiwara T; Wang WM; Chen B; Jin YW; Kim JM; Bao Z
    Small; 2009 May; 5(9):1019-24. PubMed ID: 19291730
    [No Abstract]   [Full Text] [Related]  

  • 9. Particle design of poorly water-soluble drug substances using supercritical fluid technologies.
    Yasuji T; Takeuchi H; Kawashima Y
    Adv Drug Deliv Rev; 2008 Feb; 60(3):388-98. PubMed ID: 18068261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercritical fluid technology: a promising approach in pharmaceutical research.
    Girotra P; Singh SK; Nagpal K
    Pharm Dev Technol; 2013 Feb; 18(1):22-38. PubMed ID: 23036159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties.
    Bourlinos AB; Stassinopoulos A; Anglos D; Herrera R; Anastasiadis SH; Petridis D; Giannelis EP
    Small; 2006 Apr; 2(4):513-6. PubMed ID: 17193077
    [No Abstract]   [Full Text] [Related]  

  • 12. In vitro studies on liposomal amphotericin B obtained by supercritical carbon dioxide-mediated process.
    Kadimi US; Balasubramanian DR; Ganni UR; Balaraman M; Govindarajulu V
    Nanomedicine; 2007 Dec; 3(4):273-80. PubMed ID: 17962084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of dispersion stability of surface-modified nanosized carbon black in various liquids.
    Jang HS; Park DW; Shim SE
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3827-9. PubMed ID: 18047068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid synthesis of cubic Pt nanoparticles and their use for the preparation of Pt nanoagglomerates.
    Hu X; Wang T; Dong S
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2056-61. PubMed ID: 17025124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous production and co-mixing of microparticles of nevirapine with excipients by supercritical antisolvent method for dissolution enhancement.
    Sanganwar GP; Sathigari S; Babu RJ; Gupta RB
    Eur J Pharm Sci; 2010 Jan; 39(1-3):164-74. PubMed ID: 19961931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-objects on a round trip from water to organics in a polymeric ionic liquid vehicle.
    Marcilla R; Curri ML; Cozzoli PD; Martínez MT; Loinaz I; Grande H; Pomposo JA; Mecerreyes D
    Small; 2006 Apr; 2(4):507-12. PubMed ID: 17193076
    [No Abstract]   [Full Text] [Related]  

  • 17. Anisotropically phase-separated biphasic particles.
    Teranishi T
    Small; 2006 May; 2(5):596-8. PubMed ID: 17193093
    [No Abstract]   [Full Text] [Related]  

  • 18. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured microspheres produced by supercritical fluid extraction of emulsions.
    Della Porta G; Reverchon E
    Biotechnol Bioeng; 2008 Aug; 100(5):1020-33. PubMed ID: 18383122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of TiO2-Au composites by titania-nanorod-assisted generation of gold nanoparticles at aqueous/nonpolar interfaces.
    Cozzoli PD; Curri ML; Giannini C; Agostiano A
    Small; 2006 Mar; 2(3):413-21. PubMed ID: 17193061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.