BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 17664046)

  • 1. Obese humans as economically designed feed converters: symmorphosis and low oxidative capacity skeletal muscle.
    Hudson NJ; Lehnert SA; Harper GS
    Med Hypotheses; 2008; 70(3):693-7. PubMed ID: 17664046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmorphosis and livestock bioenergetics: production animal muscle has low mitochondrial volume fractions.
    Hudson NJ
    J Anim Physiol Anim Nutr (Berl); 2009 Feb; 93(1):1-6. PubMed ID: 19386002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is skeletal muscle mitochondrial dysfunction a cause or an indirect consequence of insulin resistance in humans?
    Dumas JF; Simard G; Flamment M; Ducluzeau PH; Ritz P
    Diabetes Metab; 2009 Jun; 35(3):159-67. PubMed ID: 19349201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology.
    Gnaiger E
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1837-45. PubMed ID: 19467914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial nitric oxide synthase (eNOS) knockout mice have defective mitochondrial beta-oxidation.
    Le Gouill E; Jimenez M; Binnert C; Jayet PY; Thalmann S; Nicod P; Scherrer U; Vollenweider P
    Diabetes; 2007 Nov; 56(11):2690-6. PubMed ID: 17682093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of mitochondrial uncoupling in skeletal muscle in the development and treatment of obesity.
    Thrush AB; Dent R; McPherson R; Harper ME
    FEBS J; 2013 Oct; 280(20):5015-29. PubMed ID: 23786211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content.
    Toledo FG; Menshikova EV; Azuma K; Radiková Z; Kelley CA; Ritov VB; Kelley DE
    Diabetes; 2008 Apr; 57(4):987-94. PubMed ID: 18252894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired resting muscle energetics studied by (31)P-NMR in diet-induced obese rats.
    Chanseaume E; Bielicki G; Tardy AL; Renou JP; Freyssenet D; Boirie Y; Morio B
    Obesity (Silver Spring); 2008 Mar; 16(3):572-7. PubMed ID: 18239558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is mitochondrial dysfunction a cause of insulin resistance?
    Turner N; Heilbronn LK
    Trends Endocrinol Metab; 2008 Nov; 19(9):324-30. PubMed ID: 18804383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of angiotensin-converting enzyme inhibition on skeletal muscle oxidative function and exercise capacity in streptozotocin-induced diabetic rats.
    Rouyer O; Zoll J; Daussin F; Damgé C; Helms P; Talha S; Rasseneur L; Piquard F; Geny B
    Exp Physiol; 2007 Nov; 92(6):1047-56. PubMed ID: 17675412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic characteristics of red kangaroo skeletal muscles: is a high aerobic capacity matched by muscle mitochondrial and capillary morphology as in placental mammals?
    Dawson TJ; Mifsud B; Raad MC; Webster KN
    J Exp Biol; 2004 Jul; 207(Pt 16):2811-21. PubMed ID: 15235010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diet, energy metabolism and mitochondrial biogenesis.
    Civitarese AE; Smith SR; Ravussin E
    Curr Opin Clin Nutr Metab Care; 2007 Nov; 10(6):679-87. PubMed ID: 18089947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial adaptations to steatohepatitis induced by a methionine- and choline-deficient diet.
    Romestaing C; Piquet MA; Letexier D; Rey B; Mourier A; Servais S; Belouze M; Rouleau V; Dautresme M; Ollivier I; Favier R; Rigoulet M; Duchamp C; Sibille B
    Am J Physiol Endocrinol Metab; 2008 Jan; 294(1):E110-9. PubMed ID: 17986629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Type 2 diabetes mellitus and skeletal muscle metabolic function.
    Phielix E; Mensink M
    Physiol Behav; 2008 May; 94(2):252-8. PubMed ID: 18342897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle 3243A-->G mutation load and capacity of the mitochondrial energy-generating system.
    Janssen AJ; Schuelke M; Smeitink JA; Trijbels FJ; Sengers RC; Lucke B; Wintjes LT; Morava E; van Engelen BG; Smits BW; Hol FA; Siers MH; Ter Laak H; van der Knaap MS; Van Spronsen FJ; Rodenburg RJ; van den Heuvel LP
    Ann Neurol; 2008 Apr; 63(4):473-81. PubMed ID: 18306232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors.
    Sahlin K; Harris RC
    Acta Physiol (Oxf); 2008 Dec; 194(4):283-91. PubMed ID: 18557841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmorphosis and the insect respiratory system: allometric variation.
    Snelling EP; Seymour RS; Runciman S; Matthews PG; White CR
    J Exp Biol; 2011 Oct; 214(Pt 19):3225-37. PubMed ID: 21900470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebra fish (Danio rerio).
    Cambier S; Bénard G; Mesmer-Dudons N; Gonzalez P; Rossignol R; Brèthes D; Bourdineaud JP
    Int J Biochem Cell Biol; 2009 Apr; 41(4):791-9. PubMed ID: 18765295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress and energy crises in neuronal dysfunction.
    Nicholls DG
    Ann N Y Acad Sci; 2008 Dec; 1147():53-60. PubMed ID: 19076430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of the oxygen and substrate pathways. I. Model and strategy to test symmorphosis in a network structure.
    Taylor CR; Weibel ER; Weber JM; Vock R; Hoppeler H; Roberts TJ; Brichon G
    J Exp Biol; 1996 Aug; 199(Pt 8):1643-9. PubMed ID: 8708571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.