BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17664142)

  • 1. An approach to evaluate two-electron reduction of 9,10-phenanthraquinone and redox activity of the hydroquinone associated with oxidative stress.
    Taguchi K; Fujii S; Yamano S; Cho AK; Kamisuki S; Nakai Y; Sugawara F; Froines JR; Kumagai Y
    Free Radic Biol Med; 2007 Sep; 43(5):789-99. PubMed ID: 17664142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aldo-keto reductase 1C15 as a quinone reductase in rat endothelial cell: its involvement in redox cycling of 9,10-phenanthrenequinone.
    Matsunaga T; Shinoda Y; Inoue Y; Shimizu Y; Haga M; Endo S; El-Kabbani O; Hara A
    Free Radic Res; 2011 Jul; 45(7):848-57. PubMed ID: 21623689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Quinone-Related Electron Acceptors with Hydropersulfide Na
    Abiko Y; Nakai Y; Luong NC; Bianco CL; Fukuto JM; Kumagai Y
    Chem Res Toxicol; 2019 Apr; 32(4):551-556. PubMed ID: 30719914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox cycling of 9,10-phenanthraquinone to cause oxidative stress is terminated through its monoglucuronide conjugation in human pulmonary epithelial A549 cells.
    Taguchi K; Shimada M; Fujii S; Sumi D; Pan X; Yamano S; Nishiyama T; Hiratsuka A; Yamamoto M; Cho AK; Froines JR; Kumagai Y
    Free Radic Biol Med; 2008 Apr; 44(8):1645-55. PubMed ID: 18294972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of carbonyl reductase in superoxide formation through redox cycling of adrenochrome and 9,10-phenanthrenequinone in pig heart.
    Oginuma M; Shimada H; Imamura Y
    Chem Biol Interact; 2005 Aug; 155(3):148-54. PubMed ID: 16026774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of an aldo-keto reductase (AKR1C3) in redox cycling of 9,10-phenanthrenequinone leading to apoptosis in human endothelial cells.
    Matsunaga T; Arakaki M; Kamiya T; Endo S; El-Kabbani O; Hara A
    Chem Biol Interact; 2009 Sep; 181(1):52-60. PubMed ID: 19442656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and quantification of in vivo metabolites of 9,10-phenanthrenequinone in human urine associated with producing reactive oxygen species.
    Asahi M; Kawai M; Toyama T; Kumagai Y; Chuesaard T; Tang N; Kameda T; Hayakawa K; Toriba A
    Chem Res Toxicol; 2014 Jan; 27(1):76-85. PubMed ID: 24443938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical.
    Guillén F; Martínez MJ; Muñoz C; Martínez AT
    Arch Biochem Biophys; 1997 Mar; 339(1):190-9. PubMed ID: 9056249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox Homeostasis is Disturbed by Redox Cycling between Reactive Cysteines of Thioredoxin 1 and 9,10-Phenanthrenequinone, an Atmospheric Electron Acceptor.
    Abiko Y; Taguchi K; Hisamori M; Hiyoshi-Arai K; Luong NC; Toriba A; Kumagai Y
    Chem Res Toxicol; 2022 Aug; 35(8):1425-1432. PubMed ID: 35862866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox processes in the iron(III)/9,10-phenanthraquinone system.
    Milko P; Roithová J
    Inorg Chem; 2009 Dec; 48(24):11734-42. PubMed ID: 19928842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of 9,10-phenanthraquinone with dithiol causes oxidative modification of Cu,Zn-superoxide dismutase (SOD) through redox cycling.
    Koizumi R; Taguchi K; Hisamori M; Kumagai Y
    J Toxicol Sci; 2013; 38(3):317-24. PubMed ID: 23665930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of nitric oxide formation by neuronal nitric oxide synthase by quinones: nitric oxide synthase as a quinone reductase.
    Kumagai Y; Nakajima H; Midorikawa K; Homma-Takeda S; Shimojo N
    Chem Res Toxicol; 1998 Jun; 11(6):608-13. PubMed ID: 9625728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 9,10-phenanthrenequinone, a component of diesel exhaust particles, inhibits the reduction of 4-benzoylpyridine and all-trans-retinal and mediates superoxide formation through its redox cycling in pig heart.
    Shimada H; Oginuma M; Hara A; Imamura Y
    Chem Res Toxicol; 2004 Aug; 17(8):1145-50. PubMed ID: 15310246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox cycling of 2-(x'-mono, -di, -trichlorophenyl)- 1, 4-benzoquinones, oxidation products of polychlorinated biphenyls.
    McLean MR; Twaroski TP; Robertson LW
    Arch Biochem Biophys; 2000 Apr; 376(2):449-55. PubMed ID: 10775433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dicoumarol-sensitive NADPH: phenanthrenequinone oxidoreductase in channel catfish (Ictalurus punctatus).
    Hasspieler BM; Di Giulio RT
    Toxicol Appl Pharmacol; 1994 Apr; 125(2):184-91. PubMed ID: 7513448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 9,10-Phenanthrenequinone promotes secretion of pulmonary aldo-keto reductases with surfactant.
    Matsunaga T; Haga M; Watanabe G; Shinoda Y; Endo S; Kajiwara Y; Tanaka H; Inagaki N; El-Kabbani O; Hara A
    Cell Tissue Res; 2012 Feb; 347(2):407-17. PubMed ID: 22281686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles.
    Kumagai Y; Koide S; Taguchi K; Endo A; Nakai Y; Yoshikawa T; Shimojo N
    Chem Res Toxicol; 2002 Apr; 15(4):483-9. PubMed ID: 11952333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinone oxidoreductases and vitamin K metabolism.
    Gong X; Gutala R; Jaiswal AK
    Vitam Horm; 2008; 78():85-101. PubMed ID: 18374191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 9,10-Phenanthraquinone in diesel exhaust particles downregulates Cu,Zn-SOD and HO-1 in human pulmonary epithelial cells: intracellular iron scavenger 1,10-phenanthroline affords protection against apoptosis.
    Sugimoto R; Kumagai Y; Nakai Y; Ishii T
    Free Radic Biol Med; 2005 Feb; 38(3):388-95. PubMed ID: 15629867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter.
    Valavanidis A; Fiotakis K; Bakeas E; Vlahogianni T
    Redox Rep; 2005; 10(1):37-51. PubMed ID: 15829110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.