BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

675 related articles for article (PubMed ID: 17664631)

  • 1. Accounting for hardware imperfections in EIT image reconstruction algorithms.
    Hartinger AE; Gagnon H; Guardo R
    Physiol Meas; 2007 Jul; 28(7):S13-27. PubMed ID: 17664631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of conductivity changes and electrode movement in EIT.
    Soleimani M; Gómez-Laberge C; Adler A
    Physiol Meas; 2006 May; 27(5):S103-13. PubMed ID: 16636402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modelling errors in electrical impedance tomography.
    Dehghani H; Soleimani M
    Physiol Meas; 2007 Jul; 28(7):S45-55. PubMed ID: 17664647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct reconstruction of tissue parameters from differential multifrequency EIT in vivo.
    Mayer M; Brunner P; Merwa R; Smolle-Jüttner FM; Maier A; Scharfetter H
    Physiol Meas; 2006 May; 27(5):S93-101. PubMed ID: 16636423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Image reconstruction in electrical impedance tomography based on genetic algorithm].
    Hou W; Mo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):107-10. PubMed ID: 12744177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of the shape of conductivity spectra using differential multi-frequency magnetic induction tomography.
    Brunner P; Merwa R; Missner A; Rosell J; Hollaus K; Scharfetter H
    Physiol Meas; 2006 May; 27(5):S237-48. PubMed ID: 16636414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GREIT: a unified approach to 2D linear EIT reconstruction of lung images.
    Adler A; Arnold JH; Bayford R; Borsic A; Brown B; Dixon P; Faes TJ; Frerichs I; Gagnon H; Gärber Y; Grychtol B; Hahn G; Lionheart WR; Malik A; Patterson RP; Stocks J; Tizzard A; Weiler N; Wolf GK
    Physiol Meas; 2009 Jun; 30(6):S35-55. PubMed ID: 19491438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method.
    Bagshaw AP; Liston AD; Bayford RH; Tizzard A; Gibson AP; Tidswell AT; Sparkes MK; Dehghani H; Binnie CD; Holder DS
    Neuroimage; 2003 Oct; 20(2):752-64. PubMed ID: 14568449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal image reconstruction in electrical impedance tomography.
    Adler A; Dai T; Lionheart WR
    Physiol Meas; 2007 Jul; 28(7):S1-11. PubMed ID: 17664627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimizing EIT image artefacts from mesh variability in finite element models.
    Adler A; Lionheart WR
    Physiol Meas; 2011 Jul; 32(7):823-34. PubMed ID: 21646712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head.
    Abascal JF; Arridge SR; Atkinson D; Horesh R; Fabrizi L; De Lucia M; Horesh L; Bayford RH; Holder DS
    Neuroimage; 2008 Nov; 43(2):258-68. PubMed ID: 18694835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical impedance tomography problem with inaccurately known boundary and contact impedances.
    Kolehmainen V; Lassas M; Ola P
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1404-14. PubMed ID: 18815092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using the GRID to improve the computation speed of electrical impedance tomography (EIT) reconstruction algorithms.
    Fritschy J; Horesh L; Holder DS; Bayford RH
    Physiol Meas; 2005 Apr; 26(2):S209-15. PubMed ID: 15798234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of EIT system performance.
    Yasin M; Böhm S; Gaggero PO; Adler A
    Physiol Meas; 2011 Jul; 32(7):851-65. PubMed ID: 21646713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of electrode area, contact impedance and boundary shape on EIT images.
    Boyle A; Adler A
    Physiol Meas; 2011 Jul; 32(7):745-54. PubMed ID: 21646710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging.
    Oh TI; Koo H; Lee KH; Kim SM; Lee J; Kim SW; Seo JK; Woo EJ
    Physiol Meas; 2008 Mar; 29(3):295-307. PubMed ID: 18367806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for modelling and optimizing an electrical impedance tomography system.
    Hartinger AE; Gagnon H; Guardo R
    Physiol Meas; 2006 May; 27(5):S51-64. PubMed ID: 16636420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-frequency EIT system with radially symmetric architecture: KHU Mark1.
    Oh TI; Woo EJ; Holder D
    Physiol Meas; 2007 Jul; 28(7):S183-96. PubMed ID: 17664635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image reconstruction incorporated with the skull inhomogeneity for electrical impedance tomography.
    Ni A; Dong X; Yang G; Fu F; Tang C
    Comput Med Imaging Graph; 2008 Jul; 32(5):409-15. PubMed ID: 18501557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-frequency time-difference complex conductivity imaging of canine and human lungs using the KHU Mark1 EIT system.
    Kuen J; Woo EJ; Seo JK
    Physiol Meas; 2009 Jun; 30(6):S149-64. PubMed ID: 19491441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.