These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17664634)

  • 1. Improving the finite element forward model of the human head by warping using elastic deformation.
    Tizzard A; Bayford RH
    Physiol Meas; 2007 Jul; 28(7):S163-82. PubMed ID: 17664634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating accurate finite element meshes for the forward model of the human head in EIT.
    Tizzard A; Horesh L; Yerworth RJ; Holder DS; Bayford RH
    Physiol Meas; 2005 Apr; 26(2):S251-61. PubMed ID: 15798238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method.
    Bagshaw AP; Liston AD; Bayford RH; Tizzard A; Gibson AP; Tidswell AT; Sparkes MK; Dehghani H; Binnie CD; Holder DS
    Neuroimage; 2003 Oct; 20(2):752-64. PubMed ID: 14568449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head.
    Abascal JF; Arridge SR; Atkinson D; Horesh R; Fabrizi L; De Lucia M; Horesh L; Bayford RH; Holder DS
    Neuroimage; 2008 Nov; 43(2):258-68. PubMed ID: 18694835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for rapid production of subject specific finite element meshes for electrical impedance tomography of the human head.
    Vonach M; Marson B; Yun M; Cardoso J; Modat M; Ourselin S; Holder D
    Physiol Meas; 2012 May; 33(5):801-16. PubMed ID: 22531116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the GRID to improve the computation speed of electrical impedance tomography (EIT) reconstruction algorithms.
    Fritschy J; Horesh L; Holder DS; Bayford RH
    Physiol Meas; 2005 Apr; 26(2):S209-15. PubMed ID: 15798234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modelling errors in electrical impedance tomography.
    Dehghani H; Soleimani M
    Physiol Meas; 2007 Jul; 28(7):S45-55. PubMed ID: 17664647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image reconstruction incorporated with the skull inhomogeneity for electrical impedance tomography.
    Ni A; Dong X; Yang G; Fu F; Tang C
    Comput Med Imaging Graph; 2008 Jul; 32(5):409-15. PubMed ID: 18501557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for hardware imperfections in EIT image reconstruction algorithms.
    Hartinger AE; Gagnon H; Guardo R
    Physiol Meas; 2007 Jul; 28(7):S13-27. PubMed ID: 17664631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GREIT: a unified approach to 2D linear EIT reconstruction of lung images.
    Adler A; Arnold JH; Bayford R; Borsic A; Brown B; Dixon P; Faes TJ; Frerichs I; Gagnon H; Gärber Y; Grychtol B; Hahn G; Lionheart WR; Malik A; Patterson RP; Stocks J; Tizzard A; Weiler N; Wolf GK
    Physiol Meas; 2009 Jun; 30(6):S35-55. PubMed ID: 19491438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The boundary element method in the forward and inverse problem of electrical impedance tomography.
    de Munck JC; Faes TJ; Heethaar RM
    IEEE Trans Biomed Eng; 2000 Jun; 47(6):792-800. PubMed ID: 10833854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the forward solver for the complete electrode model in EIT using algebraic multigrid.
    Soleimani M; Powell CE; Polydorides N
    IEEE Trans Med Imaging; 2005 May; 24(5):577-83. PubMed ID: 15889545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape deformation in two-dimensional electrical impedance tomography.
    Boyle A; Adler A; Lionheart WR
    IEEE Trans Med Imaging; 2012 Dec; 31(12):2185-93. PubMed ID: 22711769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Front-tracking image reconstruction algorithm for EIT-monitored cryosurgery using the boundary element method.
    Otten DM; Rubinsky B
    Physiol Meas; 2005 Aug; 26(4):503-16. PubMed ID: 15886444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An iterative Newton-Raphson method to solve the inverse admittivity problem.
    Edic PM; Isaacson D; Saulnier GJ; Jain H; Newell JC
    IEEE Trans Biomed Eng; 1998 Jul; 45(7):899-908. PubMed ID: 9644899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Reconstruction technology of electrical impedance tomography].
    Hou W; Peng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Jun; 17(2):214-7. PubMed ID: 12557783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimizing EIT image artefacts from mesh variability in finite element models.
    Adler A; Lionheart WR
    Physiol Meas; 2011 Jul; 32(7):823-34. PubMed ID: 21646712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A direct reconstruction algorithm for electrical impedance tomography.
    Mueller JL; Siltanen S; Isaacson D
    IEEE Trans Med Imaging; 2002 Jun; 21(6):555-9. PubMed ID: 12166850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital image elasto-tomography: combinatorial and hybrid optimization algorithms for shape-based elastic property reconstruction.
    Peters A; Chase JG; Van Houten EE
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2575-83. PubMed ID: 18990627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.