BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 17664650)

  • 1. Multi-frequency parameter mapping of electrical impedance scanning using two kinds of circuit model.
    Liu R; Dong X; Fu F; You F; Shi X; Ji Z; Wang K
    Physiol Meas; 2007 Jul; 28(7):S85-100. PubMed ID: 17664650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of breast cancer lesion detection using a multi-frequency trans-admittance scanner (TAS) with 10 Hz to 500 kHz bandwidth.
    Oh TI; Lee J; Seo JK; Kim SW; Woo EJ
    Physiol Meas; 2007 Jul; 28(7):S71-84. PubMed ID: 17664649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Frequency characteristic of diseased breast tissues detected by electrical impedance scanning].
    Liu R; Fu F; Shi X; You F; Ji Z; Dong X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1090-4. PubMed ID: 16422073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards virtual electrical breast biopsy: space-frequency MUSIC for trans-admittance data.
    Scholz B
    IEEE Trans Med Imaging; 2002 Jun; 21(6):588-95. PubMed ID: 12166854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectrical parameters of the whole human body obtained through bioelectrical impedance analysis.
    Lafargue AL; Cabrales LB; Larramendi RM
    Bioelectromagnetics; 2002 Sep; 23(6):450-4. PubMed ID: 12210563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel EIS postprocessing algorithm for breast cancer diagnosis.
    Glickman YA; Filo O; Nachaliel U; Lenington S; Amin-Spector S; Ginor R
    IEEE Trans Med Imaging; 2002 Jun; 21(6):710-2. PubMed ID: 12166870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-frequency EIT system with radially symmetric architecture: KHU Mark1.
    Oh TI; Woo EJ; Holder D
    Physiol Meas; 2007 Jul; 28(7):S183-96. PubMed ID: 17664635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The complex impedance frequency response and the equivalent circuit model of human brain].
    Wu X; Dong X; Qin M; Fu F; You F; Liu R; Shi X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):500-3. PubMed ID: 14565024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary Multi-frequency Data Analyze in Electrical Impedance Scanning.
    Liu R; Dong X; Fu F; Shi X; You F; Ji Z
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():1504-7. PubMed ID: 17282486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement in EIS diagnosis accuracy using a multi-frequency parameter analysis method: preliminary results.
    Zhenyu J; Xiuzhen D; Ruigang L; Kan W; Xuetao S; Feng F; Fusheng Y
    Physiol Meas; 2008 Oct; 29(10):1221-31. PubMed ID: 18827314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of Cole parameters in multiple frequency bioelectrical impedance analysis using only the measurement of impedances.
    Ward LC; Essex T; Cornish BH
    Physiol Meas; 2006 Sep; 27(9):839-50. PubMed ID: 16868350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body composition modeling in the calf using an equivalent circuit model of multi-frequency bioimpedance analysis.
    Zhu F; Leonard EF; Levin NW
    Physiol Meas; 2005 Apr; 26(2):S133-43. PubMed ID: 15798226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of errors in multi-frequency EIT instrumentation.
    McEwan A; Cusick G; Holder DS
    Physiol Meas; 2007 Jul; 28(7):S197-215. PubMed ID: 17664636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues.
    Halter RJ; Hartov A; Paulsen KD; Schned A; Heaney J
    Physiol Meas; 2008 Jun; 29(6):S111-23. PubMed ID: 18544804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of a new integrated current source with the modified Howland circuit for EIT applications.
    Hong H; Rahal M; Demosthenous A; Bayford RH
    Physiol Meas; 2009 Oct; 30(10):999-1007. PubMed ID: 19706961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A simulation study of electrical impedance scan-imaging based on a phantom].
    Ji ZY; Fu F; Shi XT; Liu RG; Dong XZ; You FS; Wang K
    Space Med Med Eng (Beijing); 2005 Apr; 18(2):130-4. PubMed ID: 15977393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical impedance scanning in breast tumor imaging: correlation with the growth pattern of lesion.
    Wang K; Wang T; Fu F; Ji ZY; Liu RG; Liao QM; Dong XZ
    Chin Med J (Engl); 2009 Jul; 122(13):1501-6. PubMed ID: 19719937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A broadband high-frequency electrical impedance tomography system for breast imaging.
    Halter RJ; Hartov A; Paulsen KD
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):650-9. PubMed ID: 18270001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging.
    Oh TI; Koo H; Lee KH; Kim SM; Lee J; Kim SW; Seo JK; Woo EJ
    Physiol Meas; 2008 Mar; 29(3):295-307. PubMed ID: 18367806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.