These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 17665179)

  • 21. Balancing sensory inputs: Sensory reweighting of ankle proprioception and vision during a bipedal posture task.
    Kabbaligere R; Lee BC; Layne CS
    Gait Posture; 2017 Feb; 52():244-250. PubMed ID: 27978501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Postural control and automaticity in dyslexic children: the relationship between visual information and body sway.
    Barela JA; Dias JL; Godoi D; Viana AR; de Freitas PB
    Res Dev Disabil; 2011; 32(5):1814-21. PubMed ID: 21498044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reweighting of sensory inputs to control quiet standing in children from 7 to 11 and in adults.
    Cuisinier R; Olivier I; Vaugoyeau M; Nougier V; Assaiante C
    PLoS One; 2011 May; 6(5):e19697. PubMed ID: 21573028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stance width changes how sensory feedback is used for multisegmental balance control.
    Goodworth AD; Mellodge P; Peterka RJ
    J Neurophysiol; 2014 Aug; 112(3):525-42. PubMed ID: 24760788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulus-dependent changes in the vestibular contribution to human postural control.
    Cenciarini M; Peterka RJ
    J Neurophysiol; 2006 May; 95(5):2733-50. PubMed ID: 16467429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postural strategies and sensory integration: no turning point between childhood and adolescence.
    Mallau S; Vaugoyeau M; Assaiante C
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20927328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of adaptive sensorimotor control in infant sitting posture.
    Chen LC; Jeka J; Clark JE
    Gait Posture; 2016 Mar; 45():157-63. PubMed ID: 26979899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dyslexic children need more robust information to resolve conflicting sensory situations.
    Razuk M; Lukasova K; Bucci MP; Barela JA
    Dyslexia; 2020 Feb; 26(1):52-66. PubMed ID: 31680390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual inputs and postural manipulations affect the location of somatosensory percepts elicited by electrical stimulation.
    Christie BP; Charkhkar H; Shell CE; Marasco PD; Tyler DJ; Triolo RJ
    Sci Rep; 2019 Aug; 9(1):11699. PubMed ID: 31406122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Postural control adaptation to optic flow in children and adults with autism spectrum disorder.
    Lim YH; Lee HC; Falkmer T; Allison GT; Tan T; Lee WL; Morris SL
    Gait Posture; 2019 Jul; 72():175-181. PubMed ID: 31220791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling human upright posture: velocity information is more accurate than position or acceleration.
    Jeka J; Kiemel T; Creath R; Horak F; Peterka R
    J Neurophysiol; 2004 Oct; 92(4):2368-79. PubMed ID: 15140910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Balance sensory organization in children with profound hearing loss and cochlear implants.
    Suarez H; Angeli S; Suarez A; Rosales B; Carrera X; Alonso R
    Int J Pediatr Otorhinolaryngol; 2007 Apr; 71(4):629-37. PubMed ID: 17275927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aging of human supraspinal locomotor and postural control in fMRI.
    Zwergal A; Linn J; Xiong G; Brandt T; Strupp M; Jahn K
    Neurobiol Aging; 2012 Jun; 33(6):1073-84. PubMed ID: 21051105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensory Reweighting for Upright Stance in Soccer Players: A Comparison of High and Low Exposure to Soccer Heading.
    Caccese JB; Santos FV; Yamaguchi F; Jeka JJ
    J Neurotrauma; 2020 Dec; 37(24):2656-2663. PubMed ID: 32571175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct parameterization of postural stability during quiet upright stance: effects of age and altered sensory conditions.
    Kim S; Nussbaum MA; Madigan ML
    J Biomech; 2008; 41(2):406-11. PubMed ID: 17915226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensory integration for human balance control.
    Peterka RJ
    Handb Clin Neurol; 2018; 159():27-42. PubMed ID: 30482320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Body sway and sensory motor coupling adaptation in children: effects of distance manipulation.
    Godoi D; Barela JA
    Dev Psychobiol; 2008 Jan; 50(1):77-87. PubMed ID: 18085560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gymnastics Experience Enhances the Development of Bipedal-Stance Multi-Segmental Coordination and Control During Proprioceptive Reweighting.
    Busquets A; Ferrer-Uris B; Angulo-Barroso R; Federolf P
    Front Psychol; 2021; 12():661312. PubMed ID: 33935920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical Stimulation Intensity to Induce Sensory Reweighting Dynamics While Standing on Balance Board.
    Shindo M; Isezaki T; Aoki R
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of sway-referenced visual and somatosensory inputs on human head movement and postural patterns during stance.
    Di Fabio RP; Anderson JH
    J Vestib Res; 1993; 3(4):409-17. PubMed ID: 8275274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.