These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 17665292)
41. Molecular biology of renal cell cancer and the identification of therapeutic targets. Iliopoulos O J Clin Oncol; 2006 Dec; 24(35):5593-600. PubMed ID: 17158545 [TBL] [Abstract][Full Text] [Related]
42. Expression of fibronectin and HIF-1alpha in renal cell carcinomas: relationship to von Hippel-Lindau gene inactivation. He Z; Liu S; Guo M; Mao J; Hughson MD Cancer Genet Cytogenet; 2004 Jul; 152(2):89-94. PubMed ID: 15262424 [TBL] [Abstract][Full Text] [Related]
43. The protein tyrosine phosphatase receptor type J is regulated by the pVHL-HIF axis in clear cell renal cell carcinoma. Casagrande S; Ruf M; Rechsteiner M; Morra L; Brun-Schmid S; von Teichman A; Krek W; Schraml P; Moch H J Pathol; 2013 Mar; 229(4):525-34. PubMed ID: 23007793 [TBL] [Abstract][Full Text] [Related]
44. A new role for the von Hippel-Lindau tumor suppressor protein: stimulation of mitochondrial oxidative phosphorylation complex biogenesis. Hervouet E; Demont J; Pecina P; Vojtísková A; Houstek J; Simonnet H; Godinot C Carcinogenesis; 2005 Mar; 26(3):531-9. PubMed ID: 15604095 [TBL] [Abstract][Full Text] [Related]
45. von Hippel-Lindau tumor suppressor protein regulates the assembly of intercellular junctions in renal cancer cells through hypoxia-inducible factor-independent mechanisms. Calzada MJ; Esteban MA; Feijoo-Cuaresma M; Castellanos MC; Naranjo-Suárez S; Temes E; Méndez F; Yánez-Mo M; Ohh M; Landázuri MO Cancer Res; 2006 Feb; 66(3):1553-60. PubMed ID: 16452212 [TBL] [Abstract][Full Text] [Related]
46. Decoding Warburg's hypothesis: tumor-related mutations in the mitochondrial respiratory chain. Garcia-Heredia JM; Carnero A Oncotarget; 2015 Dec; 6(39):41582-99. PubMed ID: 26462158 [TBL] [Abstract][Full Text] [Related]
47. HIF alpha expression in VHL-deficient renal cancer cells is dependent on phospholipase D. Toschi A; Edelstein J; Rockwell P; Ohh M; Foster DA Oncogene; 2008 Apr; 27(19):2746-53. PubMed ID: 17998935 [TBL] [Abstract][Full Text] [Related]
48. The role of von Hippel-Lindau tumor suppressor protein and hypoxia in renal clear cell carcinoma. Sufan RI; Jewett MA; Ohh M Am J Physiol Renal Physiol; 2004 Jul; 287(1):F1-6. PubMed ID: 15180922 [TBL] [Abstract][Full Text] [Related]
49. Epigenetic regulation of HIF-1α in renal cancer cells involves HIF-1α/2α binding to a reverse hypoxia-response element. Xu J; Wang B; Xu Y; Sun L; Tian W; Shukla D; Barod R; Grillari J; Grillari-Voglauer R; Maxwell PH; Esteban MA Oncogene; 2012 Feb; 31(8):1065-72. PubMed ID: 21841824 [TBL] [Abstract][Full Text] [Related]
52. Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors. Zimmer M; Doucette D; Siddiqui N; Iliopoulos O Mol Cancer Res; 2004 Feb; 2(2):89-95. PubMed ID: 14985465 [TBL] [Abstract][Full Text] [Related]
53. Expression of the angiopoietins and their receptor Tie2 in human renal clear cell carcinomas; regulation by the von Hippel-Lindau gene and hypoxia. Currie MJ; Gunningham SP; Turner K; Han C; Scott PA; Robinson BA; Chong W; Harris AL; Fox SB J Pathol; 2002 Dec; 198(4):502-10. PubMed ID: 12434420 [TBL] [Abstract][Full Text] [Related]
54. MicroRNAs and altered metabolism of clear cell renal cell carcinoma: Potential role as aerobic glycolysis biomarkers. Morais M; Dias F; Teixeira AL; Medeiros R Biochim Biophys Acta Gen Subj; 2017 Sep; 1861(9):2175-2185. PubMed ID: 28579513 [TBL] [Abstract][Full Text] [Related]
55. Modeling the Genetic Regulation of Cancer Metabolism: Interplay between Glycolysis and Oxidative Phosphorylation. Yu L; Lu M; Jia D; Ma J; Ben-Jacob E; Levine H; Kaipparettu BA; Onuchic JN Cancer Res; 2017 Apr; 77(7):1564-1574. PubMed ID: 28202516 [TBL] [Abstract][Full Text] [Related]
56. HIF-1-Dependent Reprogramming of Glucose Metabolic Pathway of Cancer Cells and Its Therapeutic Significance. Nagao A; Kobayashi M; Koyasu S; Chow CCT; Harada H Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30634433 [TBL] [Abstract][Full Text] [Related]
57. The Warburg effect and mitochondrial oxidative phosphorylation: Friends or foes? Martins Pinto M; Paumard P; Bouchez C; Ransac S; Duvezin-Caubet S; Mazat JP; Rigoulet M; Devin A Biochim Biophys Acta Bioenerg; 2023 Jan; 1864(1):148931. PubMed ID: 36367492 [TBL] [Abstract][Full Text] [Related]
58. The air that we breeze: From 'Noble' discoveries of a general oxygen-sensing principle to its clinical use. Kietzmann T Acta Physiol (Oxf); 2020 Feb; 228(2):e13416. PubMed ID: 31755645 [No Abstract] [Full Text] [Related]
59. Intolerant of glucose and gasping for oxygen. Gribble FM Nat Med; 2009 Mar; 15(3):247-9. PubMed ID: 19265823 [No Abstract] [Full Text] [Related]
60. Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Unwin RD; Craven RA; Harnden P; Hanrahan S; Totty N; Knowles M; Eardley I; Selby PJ; Banks RE Proteomics; 2003 Aug; 3(8):1620-32. PubMed ID: 12923786 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]