BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17665375)

  • 1. The change of the state of an endohedral fullerene by encapsulation into SWCNT: a Raman spectroelectrochemical study of Dy3N@C80 peapods.
    Kalbác M; Kavan L; Zukalová M; Yang S; Cech J; Roth S; Dunsch L
    Chemistry; 2007; 13(31):8811-7. PubMed ID: 17665375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ Raman spectroelectrochemical study of 13C-labeled fullerene peapods and carbon nanotubes.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Small; 2007 Oct; 3(10):1746-52. PubMed ID: 17853497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doping of C60 fullerene peapods with lithium vapor: Raman spectroscopic and spectroelectrochemical studies.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Chemistry; 2008; 14(20):6231-6. PubMed ID: 18512827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sexithiophene encapsulated in a single-walled carbon nanotube: an in situ Raman spectroelectrochemical study of a peapod structure.
    Kalbáč M; Kavan L; Gorantla S; Gemming T; Dunsch L
    Chemistry; 2010 Oct; 16(38):11753-9. PubMed ID: 20799304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic liquid for in situ Vis/NIR and Raman spectroelectrochemistry: Doping of carbon nanostructures.
    Kavan L; Dunsch L
    Chemphyschem; 2003 Sep; 4(9):944-50. PubMed ID: 14562439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the number of stable isomeric structures of the C80 cage: a new fullerene Dy3N@C80.
    Yang S; Dunsch L
    Chemistry; 2005 Dec; 12(2):413-9. PubMed ID: 16224762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping of C70 fullerene peapods with lithium vapor: Raman spectroscopic and Raman spectroelectrochemical studies.
    Kalbáč M; Vales V; Kavan L; Dunsch L
    Nanotechnology; 2014 Dec; 25(48):485706. PubMed ID: 25397777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ Raman spectroelectrochemistry as a tool for the differentiation of inner tubes of double-wall carbon nanotubes and thin single-wall carbon nanotubes.
    Kalbác M; Kavan L; Dunsch L
    Anal Chem; 2007 Dec; 79(23):9074-81. PubMed ID: 17973461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge-induced reversible rearrangement of endohedral fullerenes: electrochemistry of tridysprosium nitride clusterfullerenes Dy3N@C2n (2n=78, 80).
    Yang S; Zalibera M; Rapta P; Dunsch L
    Chemistry; 2006 Oct; 12(30):7848-55. PubMed ID: 16865751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intermediate frequency modes of single- and double-walled carbon nanotubes: a Raman spectroscopic and in situ Raman spectroelectrochemical study.
    Kalbac M; Kavan L; Zukalová M; Dunsch L
    Chemistry; 2006 May; 12(16):4451-7. PubMed ID: 16552794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deviation from the planarity--a large Dy3N cluster encapsulated in an Ih-C80 cage: an X-ray crystallographic and vibrational spectroscopic study.
    Yang S; Troyanov SI; Popov AA; Krause M; Dunsch L
    J Am Chem Soc; 2006 Dec; 128(51):16733-9. PubMed ID: 17177423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Positions of Potassium in Chemically Doped C(60) Peapods: An in situ Spectroelectrochemical Study.
    Kalbac M; Kavan L; Zukalova M; Dunsch L
    J Phys Chem B; 2004 May; 108(20):6275-80. PubMed ID: 18950111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electronic and vibrational structure of endohedral Tm3N@C80 (I) fullerene--proof of an encaged Tm3+.
    Krause M; Liu X; Wong J; Pichler T; Knupfer M; Dunsch L
    J Phys Chem A; 2005 Aug; 109(32):7088-93. PubMed ID: 16834071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical transport properties of fullerene peapods interacting with light.
    Li YF; Kaneko T; Hatakeyama R
    Nanotechnology; 2008 Oct; 19(41):415201. PubMed ID: 21832638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant laser-induced formation of double-walled carbon nanotubes from peapods under ambient conditions.
    Berd M; Puech P; Righi A; Benfdila A; Monthioux M
    Small; 2012 Jul; 8(13):2045-52. PubMed ID: 22508660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroelectrochemistry of carbon nanostructures.
    Kavan L; Dunsch L
    Chemphyschem; 2007 May; 8(7):974-98. PubMed ID: 17476657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helical superstructures of fullerene peapods and empty single-walled carbon nanotubes formed in water.
    Nakashima N; Tanaka Y; Tomonari Y; Murakami H; Kataura H; Sakaue T; Yoshikawa K
    J Phys Chem B; 2005 Jul; 109(27):13076-82. PubMed ID: 16852626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Raman spectroscopy and transmission electron microscopy studies of a NanoBud structure.
    Tian Y; Chassaing D; Nasibulin AG; Ayala P; Jiang H; Anisimov AS; Kauppinen EI
    J Am Chem Soc; 2008 Jun; 130(23):7188-9. PubMed ID: 18481855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectra of C60 dimer and C60 polymer confined inside a (10, 10) single-walled carbon nanotube.
    Chadli H; Rahmani A; Sauvajol JL
    J Phys Condens Matter; 2010 Apr; 22(14):145303. PubMed ID: 21389526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective etching of thin single-walled carbon nanotubes.
    Kalbác M; Kavan L; Dunsch L
    J Am Chem Soc; 2009 Apr; 131(12):4529-34. PubMed ID: 19317509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.