BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 17665859)

  • 1. Enantioselective biotransformation of pentoxifylline into lisofylline using wine yeast biocatalysis.
    Pekala E; Wójcik T
    Acta Pol Pharm; 2007; 64(2):109-13. PubMed ID: 17665859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective reduction of pentoxifylline to lisofylline using whole-cell Lactobacillus kefiri biotransformation.
    Pekala E; Godawska-Matysik A; Zelaszczyk D
    Biotechnol J; 2007 Apr; 2(4):492-6. PubMed ID: 17285680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial transformation of hydroxy metabolites of 1-oxohexyl derivatives of theobromine by Cunninghamella echinulata NRRL 1384.
    Pekala E; Kochan M; Carnell AJ
    Lett Appl Microbiol; 2009 Jan; 48(1):19-24. PubMed ID: 19018970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water immiscible ionic liquids as solvents for whole cell biocatalysis.
    Pfruender H; Jones R; Weuster-Botz D
    J Biotechnol; 2006 Jun; 124(1):182-90. PubMed ID: 16413078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacokinetic modelling of pentoxifylline and lisofylline after oral and intravenous administration in mice.
    Wyska E; Szymura-Oleksiak J; Pekala E; Obruśnik A
    J Pharm Pharmacol; 2007 Apr; 59(4):495-501. PubMed ID: 17430632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of new chiral building blocks: highly enantioselective reduction of prochiral 1,3-cycloalkanediones possessing a methyl group and a protected hydroxymethyl group at their C2 position with baker's yeast or CBS catalyst.
    Watanabe H; Iwamoto M; Nakada M
    J Org Chem; 2005 Jun; 70(12):4652-8. PubMed ID: 15932301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and biological evaluation of lisofylline (LSF) analogs as a potential treatment for Type 1 diabetes.
    Cui P; Macdonald TL; Chen M; Nadler JL
    Bioorg Med Chem Lett; 2006 Jul; 16(13):3401-5. PubMed ID: 16650991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lisofylline: a potential lead for the treatment of diabetes.
    Yang Z; Chen M; Nadler JL
    Biochem Pharmacol; 2005 Jan; 69(1):1-5. PubMed ID: 15588708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst.
    Matsumoto T; Ito M; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2004 May; 64(4):481-5. PubMed ID: 14689244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of caffeine on stereoselectivities of high cell density biotransformations of cyclic beta-keto esters with Saccharomyces cerevisiae.
    Bohn M; Leppchen K; Katzberg M; Lang A; Steingroewer J; Weber J; Bley T; Bertau M
    Org Biomol Chem; 2007 Nov; 5(21):3456-63. PubMed ID: 17943204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective production of 3-hydroxy metabolites of tibolone by yeast reduction.
    Romano D; Ferrario V; Mora D; Lenna R; Molinari F
    Steroids; 2008 Jan; 73(1):112-5. PubMed ID: 17996261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae: a potential stereospecific reduction tool for biotransformation of mono- and sesquiterpenoids.
    Khor GK; Uzir MH
    Yeast; 2011 Feb; 28(2):93-107. PubMed ID: 20939023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric synthesis with immobilized yeast in organic solvents: equilibrium conversion and effect of reactant partitioning on whole cell biocatalysis.
    Gervais TR; Carta G; Gainer JL
    Biotechnol Prog; 2003; 19(2):389-95. PubMed ID: 12675577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behaviour of dehydrated baker's yeast during reduction reactions in a biphasic medium.
    Cappaert L; Larroche C
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):686-90. PubMed ID: 14666390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. R-enantioselective hydrolysis of 2,2-dimethylcyclopropanecarboxamide by amidase from a newly isolated strain Brevibacterium epidermidis ZJB-07021.
    Jin SJ; Zheng RC; Zheng YG; Shen YC
    J Appl Microbiol; 2008 Oct; 105(4):1150-7. PubMed ID: 18492048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast diversity during tapping and fermentation of palm wine from Cameroon.
    Stringini M; Comitini F; Taccari M; Ciani M
    Food Microbiol; 2009 Jun; 26(4):415-20. PubMed ID: 19376464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of fungi as biocatalysts for the reduction of diethyl 1-oxoalkylphosphonates in anhydrous hexane.
    Brzezińska-Rodak M; Zymańczyk-Duda E; Kafarski P; Lejczak B
    Biotechnol Prog; 2002; 18(6):1287-91. PubMed ID: 12467464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis.
    King A; Richard Dickinson J
    Yeast; 2000 Apr; 16(6):499-506. PubMed ID: 10790686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of Saccharomyces cerevisiae wine strains using microsatellite multiplex PCR and band pattern analysis.
    Vaudano E; Garcia-Moruno E
    Food Microbiol; 2008 Feb; 25(1):56-64. PubMed ID: 17993377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of thiols by biotransformation of cysteine-aldehyde conjugates with baker's yeast.
    Huynh-Ba T; Matthey-Doret W; Fay LB; Bel Rhlid R
    J Agric Food Chem; 2003 Jun; 51(12):3629-35. PubMed ID: 12769537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.