These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 17665934)
1. Morphology-dependent electrochemistry and electrocatalytical activity of cytochrome c. Liu H; Tian Y; Deng Z Langmuir; 2007 Aug; 23(18):9487-94. PubMed ID: 17665934 [TBL] [Abstract][Full Text] [Related]
2. Pyramidal, rodlike, spherical gold nanostructures for direct electron transfer of copper, zinc-superoxide dismutase: application to superoxide anion biosensors. Liu H; Tian Y; Xia P Langmuir; 2008 Jun; 24(12):6359-66. PubMed ID: 18479157 [TBL] [Abstract][Full Text] [Related]
3. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film. Zhu A; Luo Y; Tian Y Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788 [TBL] [Abstract][Full Text] [Related]
4. Cathodic detection of H2O2 based on nanopyramidal gold surface with enhanced electron transfer of myoglobin. Xia P; Liu H; Tian Y Biosens Bioelectron; 2009 Apr; 24(8):2470-4. PubMed ID: 19185484 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical study of the interaction between cytochrome c and DNA at a modified gold electrode. Ding X; Li J; Hu J; Li Q Anal Biochem; 2005 Apr; 339(1):46-53. PubMed ID: 15766709 [TBL] [Abstract][Full Text] [Related]
6. WO3 nanostructures facilitate electron transfer of enzyme: application to detection of H2O2 with high selectivity. Deng Z; Gong Y; Luo Y; Tian Y Biosens Bioelectron; 2009 Apr; 24(8):2465-9. PubMed ID: 19208464 [TBL] [Abstract][Full Text] [Related]
7. Detection of extracellular H2O2 released from human liver cancer cells based on TiO2 nanoneedles with enhanced electron transfer of cytochrome c. Luo Y; Liu H; Rui Q; Tian Y Anal Chem; 2009 Apr; 81(8):3035-41. PubMed ID: 19290667 [TBL] [Abstract][Full Text] [Related]
8. Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode. Zhou Y; Zhi J; Zou Y; Zhang W; Lee ST Anal Chem; 2008 Jun; 80(11):4141-6. PubMed ID: 18447324 [TBL] [Abstract][Full Text] [Related]
9. Surface-enhanced resonance Raman spectroscopy and spectroscopy study of redox-induced conformational equilibrium of cytochrome c adsorbed on DNA-modified metal electrode. Jiang X; Wang Y; Qu X; Dong S Biosens Bioelectron; 2006 Jul; 22(1):49-55. PubMed ID: 16414257 [TBL] [Abstract][Full Text] [Related]
10. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles-chitosan-carbon nanotubes-modified electrode. Xiang C; Zou Y; Sun LX; Xu F Talanta; 2007 Nov; 74(2):206-11. PubMed ID: 18371631 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical performance of gold nanoparticle-cytochrome c hybrid interface for H2O2 detection. Yagati AK; Lee T; Min J; Choi JW Colloids Surf B Biointerfaces; 2012 Apr; 92():161-7. PubMed ID: 22197224 [TBL] [Abstract][Full Text] [Related]
12. Voltammetric investigation of cytochrome c on gold coated with a self-assembled glutathione monolayer. Wu Y; Hu S Bioelectrochemistry; 2006 Jan; 68(1):105-12. PubMed ID: 16043421 [TBL] [Abstract][Full Text] [Related]
13. Real-time electrochemical monitoring of cellular H2O2 integrated with in situ selective cultivation of living cells based on dual functional protein microarrays at Au-TiO2 surfaces. Li X; Liu Y; Zhu A; Luo Y; Deng Z; Tian Y Anal Chem; 2010 Aug; 82(15):6512-8. PubMed ID: 20583800 [TBL] [Abstract][Full Text] [Related]
14. Direct electrochemistry of cytochrome c on a phosphonic acid terminated self-assembled monolayers. Chen Y; Yang XJ; Guo LR; Jin B; Xia XH; Zheng LM Talanta; 2009 Apr; 78(1):248-52. PubMed ID: 19174233 [TBL] [Abstract][Full Text] [Related]
15. Electroanalytical properties of cytochrome c by direct electrochemistry on multi-walled carbon nanotubes incorporated with DNA biocomposite film. Shie JW; Yogeswaran U; Chen SM Talanta; 2008 Feb; 74(5):1659-69. PubMed ID: 18371833 [TBL] [Abstract][Full Text] [Related]
16. Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode. Zhang L Biosens Bioelectron; 2008 Jun; 23(11):1610-5. PubMed ID: 18358711 [TBL] [Abstract][Full Text] [Related]
17. Bienzymatic glucose biosensor based on direct electrochemistry of cytochrome c on gold nanoparticles/polyaniline nanospheres composite. Xiang C; Zou Y; Qiu S; Sun L; Xu F; Zhou H Talanta; 2013 Jun; 110():96-100. PubMed ID: 23618181 [TBL] [Abstract][Full Text] [Related]
18. Using scanning electrochemical microscopy (SECM) to measure the electron-transfer kinetics of cytochrome c immobilized on a COOH-terminated alkanethiol monolayer on a gold electrode. Holt KB Langmuir; 2006 Apr; 22(9):4298-304. PubMed ID: 16618178 [TBL] [Abstract][Full Text] [Related]
19. Cytochrome c superstructure biocomposite nucleated by gold nanoparticle: thermal stability and voltammetric behavior. Jiang X; Shang L; Wang Y; Dong S Biomacromolecules; 2005; 6(6):3030-6. PubMed ID: 16283723 [TBL] [Abstract][Full Text] [Related]
20. Direct electrochemistry behavior of cytochrome c/L-cysteine modified electrode and its electrocatalytic oxidation to nitric oxide. Liu YC; Cui SQ; Zhao J; Yang ZS Bioelectrochemistry; 2007 May; 70(2):416-20. PubMed ID: 16872916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]