These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17665936)

  • 1. Body- or tip-controlled reactivity of gold nanorods and their conversion to particles through other anisotropic structures.
    Sreeprasad TS; Samal AK; Pradeep T
    Langmuir; 2007 Aug; 23(18):9463-71. PubMed ID: 17665936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural evolution of gold nanorods during controlled secondary growth.
    Keul HA; Möller M; Bockstaller MR
    Langmuir; 2007 Sep; 23(20):10307-15. PubMed ID: 17713936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of bromide ions in seeding growth of Au nanorods.
    Garg N; Scholl C; Mohanty A; Jin R
    Langmuir; 2010 Jun; 26(12):10271-6. PubMed ID: 20394386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods.
    Smith DK; Korgel BA
    Langmuir; 2008 Feb; 24(3):644-9. PubMed ID: 18184021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces.
    Sławiński GW; Zamborini FP
    Langmuir; 2007 Sep; 23(20):10357-65. PubMed ID: 17760472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of single-crystalline platinum nanorods within a soft crystalline surfactant-Pt(II) complex.
    Krishnaswamy R; Remita H; Impéror-Clerc M; Even C; Davidson P; Pansu B
    Chemphyschem; 2006 Jul; 7(7):1510-3. PubMed ID: 16810723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces.
    Horiguchi Y; Honda K; Kato Y; Nakashima N; Niidome Y
    Langmuir; 2008 Oct; 24(20):12026-31. PubMed ID: 18759472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct synthesis of branched gold nanocrystals and their transformation into spherical nanoparticles.
    Wu HY; Liu M; Huang MH
    J Phys Chem B; 2006 Oct; 110(39):19291-4. PubMed ID: 17004782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of intensity and energy of CW UV light on the growth of gold nanorods.
    Miranda OR; Ahmadi TS
    J Phys Chem B; 2005 Aug; 109(33):15724-34. PubMed ID: 16852995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and branching of gold nanoparticles through mesoporous silica thin films.
    Angelomé PC; Pastoriza-Santos I; Pérez-Juste J; Rodríguez-González B; Zelcer A; Soler-Illia GJ; Liz-Marzán LM
    Nanoscale; 2012 Feb; 4(3):931-9. PubMed ID: 22193971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iodide in CTAB prevents gold nanorod formation.
    Smith DK; Miller NR; Korgel BA
    Langmuir; 2009 Aug; 25(16):9518-24. PubMed ID: 19413325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of high-density crystalline-shape gold nanoparticles on indium tin oxide surfaces: effects of alcohothermal seeding.
    Umar AA; Salleh MM; Majlis BY; Oyama M
    J Nanosci Nanotechnol; 2011 Jun; 11(6):4974-80. PubMed ID: 21770130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes.
    Rodríguez-Fernández J; Pérez-Juste J; Mulvaney P; Liz-Marzán LM
    J Phys Chem B; 2005 Aug; 109(30):14257-61. PubMed ID: 16852790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Simulating synthesis": ceria nanosphere self-assembly into nanorods and framework architectures.
    Sayle DC; Feng X; Ding Y; Wang ZL; Sayle TX
    J Am Chem Soc; 2007 Jun; 129(25):7924-35. PubMed ID: 17547398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms.
    Menagen G; Macdonald JE; Shemesh Y; Popov I; Banin U
    J Am Chem Soc; 2009 Dec; 131(47):17406-11. PubMed ID: 19894717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of gold nanorods through a place exchange reaction inside an ionic exchange resin.
    Dai Q; Coutts J; Zou J; Huo Q
    Chem Commun (Camb); 2008 Jul; (25):2858-60. PubMed ID: 18566704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical formation of crooked gold nanorods and gold networked structures by the additive organic solvent.
    Huang CJ; Chiu PH; Wang YH; Yang CF; Feng SW
    J Colloid Interface Sci; 2007 Feb; 306(1):56-65. PubMed ID: 17064724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Template-assisted deposition of CTAB-functionalized gold nanoparticles with nanoscale resolution.
    Tinguely JC; Charron G; Lau-Truong S; Hohenau A; Grand J; Félidj N; Aubard J; Krenn JR
    J Colloid Interface Sci; 2013 Mar; 394():237-42. PubMed ID: 23352701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cetyltrimethylammonium bromide silver bromide complex as the capping agent of gold nanorods.
    Hubert F; Testard F; Spalla O
    Langmuir; 2008 Sep; 24(17):9219-22. PubMed ID: 18690754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.