These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17665936)

  • 21. One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles.
    Okitsu K; Sharyo K; Nishimura R
    Langmuir; 2009 Jul; 25(14):7786-90. PubMed ID: 19545140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape transformation mechanism of silver nanorods in aqueous solution.
    Damm C; Segets D; Yang G; Vieweg BF; Spiecker E; Peukert W
    Small; 2011 Jan; 7(1):147-56. PubMed ID: 21132708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new route to obtain high-yield multiple-shaped gold nanoparticles in aqueous solution using microwave irradiation.
    Kundu S; Peng L; Liang H
    Inorg Chem; 2008 Jul; 47(14):6344-52. PubMed ID: 18563880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2.
    Tsuji M; Gomi S; Maeda Y; Matsunaga M; Hikino S; Uto K; Tsuji T; Kawazumi H
    Langmuir; 2012 Jun; 28(24):8845-61. PubMed ID: 22506506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seedless synthesis of octahedral gold nanoparticles in condensed surfactant phase.
    Cao C; Park S; Sim SJ
    J Colloid Interface Sci; 2008 Jun; 322(1):152-7. PubMed ID: 18395217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel ascorbic acid based ionic liquids for the in situ synthesis of quasi-spherical and anisotropic gold nanostructures in aqueous medium.
    Dinda E; Si S; Kotal A; Mandal TK
    Chemistry; 2008; 14(18):5528-37. PubMed ID: 18470852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation and characterization of surfactant stabilized silver nanoparticles: a kinetic study.
    Al-Thabaiti SA; Al-Nowaiser FM; Obaid AY; Al-Youbi AO; Khan Z
    Colloids Surf B Biointerfaces; 2008 Dec; 67(2):230-7. PubMed ID: 18922685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-assembly of copper succinate nanoparticles to form anisotropic mesostructures.
    Ganguly A; Ahmad T; Ganguli AK
    Dalton Trans; 2009 May; (18):3536-41. PubMed ID: 19381416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and mechanistic study of palladium nanobars and nanorods.
    Xiong Y; Cai H; Wiley BJ; Wang J; Kim MJ; Xia Y
    J Am Chem Soc; 2007 Mar; 129(12):3665-75. PubMed ID: 17335211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating.
    Xiang Y; Wu X; Liu D; Li Z; Chu W; Feng L; Zhang K; Zhou W; Xie S
    Langmuir; 2008 Apr; 24(7):3465-70. PubMed ID: 18294010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thorough tuning of the aspect ratio of gold nanorods using response surface methodology.
    Hormozi-Nezhad MR; Robatjazi H; Jalali-Heravi M
    Anal Chim Acta; 2013 May; 779():14-21. PubMed ID: 23663667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth of gold nanorods and bipyramids using CTEAB surfactant.
    Kou X; Zhang S; Tsung CK; Yeung MH; Shi Q; Stucky GD; Sun L; Wang J; Yan C
    J Phys Chem B; 2006 Aug; 110(33):16377-83. PubMed ID: 16913766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron oxide coated gold nanorods: synthesis, characterization, and magnetic manipulation.
    Gole A; Stone JW; Gemmill WR; zur Loye HC; Murphy CJ
    Langmuir; 2008 Jun; 24(12):6232-7. PubMed ID: 18484755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational modeling of nanorod growth.
    Grochola G; Snook IK; Russo SP
    J Chem Phys; 2007 Nov; 127(19):194707. PubMed ID: 18035898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical assemblies of gold nanoparticles at the surface of a film formed by a bridged silsesquioxane containing pendant dodecyl chains.
    Gómez ML; Hoppe CE; Zucchi IA; Williams RJ; Giannotti MI; López-Quintela MA
    Langmuir; 2009 Jan; 25(2):1210-7. PubMed ID: 19105745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective growth of metal tips onto semiconductor quantum rods and tetrapods.
    Mokari T; Rothenberg E; Popov I; Costi R; Banin U
    Science; 2004 Jun; 304(5678):1787-90. PubMed ID: 15205530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling the length and shape of gold nanorods.
    Chen HM; Peng HC; Liu RS; Asakura K; Lee CL; Lee JF; Hu SF
    J Phys Chem B; 2005 Oct; 109(42):19553-5. PubMed ID: 16853528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anisotropic assembly of gold nanorods assisted by selective ion recognition of surface-anchored crown ether derivatives.
    Nakashima H; Furukawa K; Kashimura Y; Torimitsu K
    Chem Commun (Camb); 2007 Mar; (10):1080-2. PubMed ID: 17325812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile synthesis of gold nanoworms with a tunable length and aspect ratio through oriented attachment of nanoparticles.
    Ahmed W; Glass C; van Ruitenbeek JM
    Nanoscale; 2014 Nov; 6(21):13222-7. PubMed ID: 25257513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short gold nanorod growth revisited: the critical role of the bromide counterion.
    Si S; Leduc C; Delville MH; Lounis B
    Chemphyschem; 2012 Jan; 13(1):193-202. PubMed ID: 22162413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.