These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17666775)

  • 1. Molecular analysis of a novel tandemly organized repetitive DNA sequence in Citrus limon (L.) Burm.
    De Felice B; Ciarmiello LF; Wilson RR; Conicella C
    J Appl Genet; 2007; 48(3):233-9. PubMed ID: 17666775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel repetitive DNA sequence in lemon [Citrus limon (L.) Burm.] and related species Bruna.
    De Felice B; Wilson R R; Ciarmiello L; Conicella C
    J Appl Genet; 2004; 45(3):315-20. PubMed ID: 15306722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a novel satellite DNA sequence from Flying Dragon (Poncirus trifoliata).
    De Felice B; Wilson RR; Ciarmiello L; Scarano MT; Ferrante S
    Genetica; 2006 May; 127(1-3):45-53. PubMed ID: 16850212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of two families of satellite-like repetitive DNA sequences from the zebrafish (Brachydanio rerio).
    Ekker M; Fritz A; Westerfield M
    Genomics; 1992 Aug; 13(4):1169-73. PubMed ID: 1339388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cytogenetic analysis of genome-specific repetitive elements in Citrus clementina Hort. Ex Tan. and its taxonomic implications.
    Deng H; Xiang S; Guo Q; Jin W; Cai Z; Liang G
    BMC Plant Biol; 2019 Feb; 19(1):77. PubMed ID: 30770721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-simple sequence repeat markers and flow cytometry for the characterization of closely related Citrus limon germplasms.
    Capparelli R; Viscardi M; Amoroso MG; Blaiotta G; Bianco M
    Biotechnol Lett; 2004 Aug; 26(16):1295-9. PubMed ID: 15483390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences.
    Tek AL; Song J; Macas J; Jiang J
    Genetics; 2005 Jul; 170(3):1231-8. PubMed ID: 15911575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of repetitive DNA sequences from Panax ginseng.
    Ho IS; Leung FC
    Mol Genet Genomics; 2002 Feb; 266(6):951-61. PubMed ID: 11862489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analyses of a repetitive DNA sequence in wheat (Triticum aestivum L.).
    Ueng PP; Hang A; Tsang H; Vega JM; Wang L; Burton CS; He FT; Liu B
    Genome; 2000 Jun; 43(3):556-63. PubMed ID: 10902721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary dynamics of satellite DNA repeats from Phaseolus beans.
    Ribeiro T; Dos Santos KG; Richard MM; Sévignac M; Thareau V; Geffroy V; Pedrosa-Harand A
    Protoplasma; 2017 Mar; 254(2):791-801. PubMed ID: 27335007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary diversification of satellite DNA sequences from Leymus (Poaceae: Triticeae).
    Anamthawat-Jónsson K; Wenke T; Thórsson AT; Sveinsson S; Zakrzewski F; Schmidt T
    Genome; 2009 Apr; 52(4):381-90. PubMed ID: 19370093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of a variant family of mouse minor satellite DNA that hybridizes preferentially to chromosome 4.
    Broccoli D; Trevor KT; Miller OJ; Miller DA
    Genomics; 1991 May; 10(1):68-74. PubMed ID: 2045111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing the citrus cultivar Carrizo genome through 454 shotgun sequencing.
    Belknap WR; Wang Y; Huo N; Wu J; Rockhold DR; Gu YQ; Stover E
    Genome; 2011 Dec; 54(12):1005-15. PubMed ID: 22133378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A satellite DNA family from pollock (Pollachius virens).
    Denovan EM; Wright JM
    Gene; 1990 Mar; 87(2):279-83. PubMed ID: 2332172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An unusual satellite DNA from Zamia paucijuga (Cycadales) characterised by two different organisations of the repetitive unit in the plant genome.
    Cafasso D; Cozzolino S; De Luca P; Chinali G
    Gene; 2003 Jun; 311():71-9. PubMed ID: 12853140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular structure, chromosomal organization, and interspecies distribution of a family of tandemly repeated DNA sequences of Antirrhinum majus L.
    Schmidt T; Kudla J
    Genome; 1996 Apr; 39(2):243-8. PubMed ID: 8984001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic organization and evolution of the soybean SB92 satellite sequence.
    Vahedian M; Shi L; Zhu T; Okimoto R; Danna K; Keim P
    Plant Mol Biol; 1995 Nov; 29(4):857-62. PubMed ID: 8541510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of the DNA minisatellite probe MZ 1.3 and its application to DNA 'fingerprinting' analysis.
    Schacker U; Schneider PM; Holtkamp B; Bohnke E; Fimmers R; Sonneborn HH; Rittner C
    Forensic Sci Int; 1990 Feb; 44(2-3):209-24. PubMed ID: 1969380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species.
    Kijas JM; Fowler JC; Thomas MR
    Genome; 1995 Apr; 38(2):349-55. PubMed ID: 7774802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.