BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17667222)

  • 1. Application of extremum seeking control to turbodynamic blood pumps.
    Gwak KW
    ASAIO J; 2007; 53(4):403-9. PubMed ID: 17667222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety-enhanced optimal control of turbodynamic blood pumps.
    Gwak KW; Antaki JF; Paden BE; Kang B
    Artif Organs; 2011 Jul; 35(7):725-32. PubMed ID: 21749412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic controller for left ventricular assist device based on pulsatility ratio.
    Choi S; Boston JR; Antaki JF
    Artif Organs; 2007 Feb; 31(2):114-25. PubMed ID: 17298400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First clinical experience with an automatic control system for rotary blood pumps during ergometry and right-heart catheterization.
    Schima H; Vollkron M; Jantsch U; Crevenna R; Roethy W; Benkowski R; Morello G; Quittan M; Hiesmayr M; Wieselthaler G
    J Heart Lung Transplant; 2006 Feb; 25(2):167-73. PubMed ID: 16446216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; Nüsser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a suction detection system for axial blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    Artif Organs; 2004 Aug; 28(8):709-16. PubMed ID: 15270952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An anti-suction control for an intra-aorta pump using blood assistant index: a numerical simulation.
    Gao B; Gu K; Zeng Y; Chang Y
    Artif Organs; 2012 Mar; 36(3):275-82. PubMed ID: 21951205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study.
    Giridharan GA; Skliar M
    Artif Organs; 2006 Apr; 30(4):301-7. PubMed ID: 16643388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model-free adaptive control to a blood pump based on heart rate.
    Chang Y; Gao B; Gu K
    ASAIO J; 2011; 57(4):262-7. PubMed ID: 21502862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of multiobjective hemodynamic control of a heart-assist pump.
    Gwak KW; Ricci M; Snyder S; Paden BE; Boston JR; Simaan MA; Antaki JF
    ASAIO J; 2005; 51(4):329-35. PubMed ID: 16156294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient.
    Arndt A; Nüsser P; Graichen K; Müller J; Lampe B
    Artif Organs; 2008 Oct; 32(10):761-71. PubMed ID: 18959664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced suction detection for an axial flow pump.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    Artif Organs; 2006 Sep; 30(9):665-70. PubMed ID: 16934094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Synthesis and evaluation of the adaptive control system for the ventricular assist device by using the circulatory system simulator].
    Feng JS; Yoshizawa M; Takeda H; Miura M; Yanbe T; Katahira Y; Nitta S
    Iyodenshi To Seitai Kogaku; 1989 Mar; 27(1):8-18. PubMed ID: 2754864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Realization of voice coil motor control with H8/338 micro-controller unit in left ventricular assist pump].
    Lu GW; Wu J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2001 Jul; 25(4):207-8, 238. PubMed ID: 12583218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Baroreflex sensitivity controller by intra-aortic pump: a potential benefit for heart recovery.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    ASAIO J; 2012; 58(3):197-203. PubMed ID: 22543754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Physiological Controller for Turbodynamic Ventricular Assist Devices Based on Left Ventricular Systolic Pressure.
    Petrou A; Ochsner G; Amacher R; Pergantis P; Rebholz M; Meboldt M; Schmid Daners M
    Artif Organs; 2016 Sep; 40(9):842-55. PubMed ID: 27645395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute in vivo evaluation of an implantable continuous flow biventricular assist system.
    Saeed D; Ootaki Y; Ootaki C; Akiyama M; Horai T; Catanese J; Fumoto H; Dessoffy R; Massiello AL; Horvath DJ; Zhou Q; Chen JF; Benefit S; Golding LA; Fukamachi K
    ASAIO J; 2008; 54(1):20-4. PubMed ID: 18204311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.