These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17667222)

  • 21. Noninvasive average flow estimation for an implantable rotary blood pump: a new algorithm incorporating the role of blood viscosity.
    Malagutti N; Karantonis DM; Cloherty SL; Ayre PJ; Mason DG; Salamonsen RF; Lovell NH
    Artif Organs; 2007 Jan; 31(1):45-52. PubMed ID: 17209960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow visualization techniques in a mock ventricle supported by a nonpulsatile left ventricular assist device.
    Khalil HA; Metcalfe RW; Kleis SJ; Lee EL; Gilbert NL; Kerr DT; Frazier OH; Cohn WE
    ASAIO J; 2009; 55(4):323-7. PubMed ID: 19512887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and classification of physiologically significant pumping states in an implantable rotary blood pump.
    Karantonis DM; Lovell NH; Ayre PJ; Mason DG; Cloherty SL
    Artif Organs; 2006 Sep; 30(9):671-9. PubMed ID: 16934095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Minimal sensor count approach to fuzzy logic rotary blood pump flow control.
    Casas F; Ahmed N; Reeves A
    ASAIO J; 2007; 53(2):140-6. PubMed ID: 17413551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume.
    Ochsner G; Amacher R; Wilhelm MJ; Vandenberghe S; Tevaearai H; Plass A; Amstutz A; Falk V; Schmid Daners M
    Artif Organs; 2014 Jul; 38(7):527-38. PubMed ID: 24256168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hemodynamic guidelines for design and control of a turbodynamic pediatric ventricular assist device.
    Uber BE; Webber SA; Morell VO; Antaki JF
    ASAIO J; 2006; 52(4):471-8. PubMed ID: 16883130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response of a physiological controller for ventricular assist devices during acute patho-physiological events: an in vitro study.
    Petrou A; Pergantis P; Ochsner G; Amacher R; Krabatsch T; Falk V; Meboldt M; Daners MS
    Biomed Tech (Berl); 2017 Nov; 62(6):623-633. PubMed ID: 28182575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pulse-pressure-enhancing controller for better physiologic perfusion of rotary blood pumps based on speed modulation.
    Huang F; Ruan X; Fu X
    ASAIO J; 2014; 60(3):269-79. PubMed ID: 24614360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Vivo Evaluation of Physiologic Control Algorithms for Left Ventricular Assist Devices Based on Left Ventricular Volume or Pressure.
    Ochsner G; Wilhelm MJ; Amacher R; Petrou A; Cesarovic N; Staufert S; Röhrnbauer B; Maisano F; Hierold C; Meboldt M; Schmid Daners M
    ASAIO J; 2017; 63(5):568-577. PubMed ID: 28857904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Research on the control arithmetic for blood pump based on ventricular work].
    Xu X; Tan J; Gong Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1089-92. PubMed ID: 18027703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synchronized pulsatile speed control of turbodynamic left ventricular assist devices: review and prospects.
    Amacher R; Ochsner G; Schmid Daners M
    Artif Organs; 2014 Oct; 38(10):867-75. PubMed ID: 24404879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump.
    Ren Z; Jahanmir S; Heshmat H; Hunsberger AZ; Walton JF
    ASAIO J; 2009; 55(4):340-7. PubMed ID: 19381082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological controller of an intra-aorta pump based on baroreflex sensitivity.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    Artif Organs; 2012 Dec; 36(12):1015-25. PubMed ID: 22963124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noninvasive average flow and differential pressure estimation for an implantable rotary blood pump using dimensional analysis.
    Lim E; Karantonis DM; Reizes JA; Cloherty SL; Mason DG; Lovell NH
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):2094-101. PubMed ID: 18632372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new technique to control brushless motor for blood pump application.
    Fonseca J; Andrade A; Nicolosi DE; Biscegli JF; Legendre D; Bock E; Lucchi JC
    Artif Organs; 2008 Apr; 32(4):355-9. PubMed ID: 18370953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suction events during left ventricular support and ventricular arrhythmias.
    Vollkron M; Voitl P; Ta J; Wieselthaler G; Schima H
    J Heart Lung Transplant; 2007 Aug; 26(8):819-25. PubMed ID: 17692786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A suction detection system for rotary blood pumps based on the Lagrangian support vector machine algorithm.
    Wang Y; Simaan MA
    IEEE J Biomed Health Inform; 2013 May; 17(3):654-63. PubMed ID: 23192602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques.
    Yu YC; Simaan MA; Mushi SE; Zorn NV
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiologic outcome of varying speed rotary blood pump support algorithms: a review study.
    Bozkurt S
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):13-28. PubMed ID: 26577710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reliable suction detection for patients with rotary blood pumps.
    Mason DG; Hilton AK; Salamonsen RF
    ASAIO J; 2008; 54(4):359-66. PubMed ID: 18645352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.