These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 17667228)
1. Particle image velocimetry-validated, computational fluid dynamics-based design to reduce shear stress and residence time in central venous hemodialysis catheters. Mareels G; Kaminsky R; Eloot S; Verdonck PR ASAIO J; 2007; 53(4):438-46. PubMed ID: 17667228 [TBL] [Abstract][Full Text] [Related]
2. Computational fluid dynamics-analysis of the Niagara hemodialysis catheter in a right heart model. Mareels G; De Wachter DS; Verdonck PR Artif Organs; 2004 Jul; 28(7):639-48. PubMed ID: 15209857 [TBL] [Abstract][Full Text] [Related]
3. Fluid mechanics and clinical success of central venous catheters for dialysis--answers to simple but persisting problems. Ash SR Semin Dial; 2007; 20(3):237-56. PubMed ID: 17555490 [TBL] [Abstract][Full Text] [Related]
4. Computational flow dynamics and preclinical assessment of a novel hemodialysis catheter. Clark TW; Van Canneyt K; Verdonck P Semin Dial; 2012; 25(5):574-81. PubMed ID: 22353667 [TBL] [Abstract][Full Text] [Related]
5. Comparison of symmetric hemodialysis catheters using computational fluid dynamics. Clark TW; Isu G; Gallo D; Verdonck P; Morbiducci U J Vasc Interv Radiol; 2015 Feb; 26(2):252-9.e2. PubMed ID: 25645414 [TBL] [Abstract][Full Text] [Related]
6. Numerical simulation of thrombus aspiration in two realistic models of catheter tips. Pennati G; Balossino R; Dubini G; Migliavacca F Artif Organs; 2010 Apr; 34(4):301-10. PubMed ID: 20420612 [TBL] [Abstract][Full Text] [Related]
7. Measuring of the heparin leakage into the circulation from central venous catheters--an in vivo study. Markota I; Markota D; Tomic M Nephrol Dial Transplant; 2009 May; 24(5):1550-3. PubMed ID: 19075195 [TBL] [Abstract][Full Text] [Related]
8. Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin. Lucas TC; Tessarolo F; Jakitsch V; Caola I; Brunori G; Nollo G; Huebner R Artif Organs; 2014 Jul; 38(7):556-65. PubMed ID: 24341622 [TBL] [Abstract][Full Text] [Related]
9. Advances in tunneled central venous catheters for dialysis: design and performance. Ash SR Semin Dial; 2008; 21(6):504-15. PubMed ID: 19000125 [TBL] [Abstract][Full Text] [Related]
10. How much is catheter flow influenced by the use of closed luer lock access devices? Eloot S; De Vos JY; Hombrouckx R; Verdonck P Nephrol Dial Transplant; 2007 Oct; 22(10):3061-4. PubMed ID: 17597088 [TBL] [Abstract][Full Text] [Related]
11. Impact of side-hole geometry on the performance of hemodialysis catheter tips: A computational fluid dynamics assessment. Owen DG; de Oliveira DC; Qian S; Green NC; Shepherd DET; Espino DM PLoS One; 2020; 15(8):e0236946. PubMed ID: 32764790 [TBL] [Abstract][Full Text] [Related]
12. Computational fluid dynamics of the right atrium: Assessment of modelling criteria for the evaluation of dialysis catheters. de Oliveira DC; Owen DG; Qian S; Green NC; Espino DM; Shepherd DET PLoS One; 2021; 16(2):e0247438. PubMed ID: 33630903 [TBL] [Abstract][Full Text] [Related]
13. Computational model of the fluid dynamics of a cannula inserted in a vessel: incidence of the presence of side holes in blood flow. Grigioni M; Daniele C; Morbiducci U; D'Avenio G; Di Benedetto G; Del Gaudio C; Barbaro V J Biomech; 2002 Dec; 35(12):1599-612. PubMed ID: 12445613 [TBL] [Abstract][Full Text] [Related]
14. Computational fluid dynamics and digital particle image velocimetry study of the flow through an optimized micro-axial blood pump. Triep M; Brücker C; Schröder W; Siess T Artif Organs; 2006 May; 30(5):384-91. PubMed ID: 16683957 [TBL] [Abstract][Full Text] [Related]
15. Comparison of recirculation percentage of the palindrome catheter and standard hemodialysis catheters in a swine model. Tal MG J Vasc Interv Radiol; 2005 Sep; 16(9):1237-40. PubMed ID: 16151065 [TBL] [Abstract][Full Text] [Related]
16. Hemodialysis catheter tip design: observations on fluid flow and recirculation. Vesely TM; Ravenscroft A J Vasc Access; 2016; 17(1):29-39. PubMed ID: 26349860 [TBL] [Abstract][Full Text] [Related]
17. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage. Manning KB; Herbertson LH; Fontaine AA; Deutsch S J Biomech Eng; 2008 Aug; 130(4):041001. PubMed ID: 18601443 [TBL] [Abstract][Full Text] [Related]
18. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses. Longest PW; Kleinstreuer C; Deanda A Ann Biomed Eng; 2005 Dec; 33(12):1752-66. PubMed ID: 16389524 [TBL] [Abstract][Full Text] [Related]
19. Unsteady near wall residence times and shear exposure in model distal arterial bypass grafts. Sherwin SJ; Doorly DJ; Franke P; Peiró J Biorheology; 2002; 39(3-4):365-71. PubMed ID: 12122254 [TBL] [Abstract][Full Text] [Related]
20. Retrospective analysis of catheter recirculation in prevalent dialysis patients. Moossavi S; Vachharajani TJ; Jordan J; Russell GB; Kaufman T; Moossavi S Semin Dial; 2008; 21(3):289-92. PubMed ID: 18533970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]