These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17667232)

  • 1. Modeling of blood flow in a balloon-pulsed intravascular respiratory catheter.
    Zinovik IN; Federspiel WJ
    ASAIO J; 2007; 53(4):464-8. PubMed ID: 17667232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical modeling of anisotropic fiber bundle behavior in oxygenators.
    Bhavsar SS; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2011 Nov; 35(11):1095-102. PubMed ID: 21973082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniformity of the fluid flow velocities within hollow fiber membranes of blood oxygenation devices.
    Mazaheri AR; Ahmadi G
    Artif Organs; 2006 Jan; 30(1):10-5. PubMed ID: 16409392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intravascular blood oxygenation using hollow fibers in a disk-shaped configuration: experimental evaluation of the relationship between porosity and performance.
    Cattaneo GF; Reul H; Schmitz-Rode T; Steinseifer U
    ASAIO J; 2006; 52(2):180-5. PubMed ID: 16557105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow mixing enhancement from balloon pulsations in an intravenous oxygenator.
    Guzmán AM; Escobar RA; Amon CH
    J Biomech Eng; 2005 Jun; 127(3):400-15. PubMed ID: 16060347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a low flow resistance intravenous oxygenator.
    Federspiel WJ; Hout MS; Hewitt TJ; Lund LW; Heinrich SA; Litwak P; Walters FR; Reeder GD; Borovetz HS; Hattler BG
    ASAIO J; 1997; 43(5):M725-30. PubMed ID: 9360141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: computational and experimental studies.
    Zierenberg JR; Fujioka H; Cook KE; Grotberg JB
    J Biomech Eng; 2008 Jun; 130(3):031019. PubMed ID: 18532868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow visualization study of a novel respiratory assist catheter.
    Budilarto SG; Frankowski BJ; Hattler BG; Federspiel WJ
    Artif Organs; 2009 Jun; 33(6):411-8. PubMed ID: 19473135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow visualization study of a pulsating respiratory assist catheter.
    Budilarto SG; Frankowski BJ; Hattler BG; Federspiel WJ
    ASAIO J; 2005; 51(6):673-80. PubMed ID: 16340349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept.
    Schlanstein PC; Hesselmann F; Jansen SV; Gemsa J; Kaufmann TA; Klaas M; Roggenkamp D; Schröder W; Schmitz-Rode T; Steinseifer U; Arens J
    Cardiovasc Eng Technol; 2015 Sep; 6(3):340-51. PubMed ID: 26577365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving oxygenator performance using computational simulation and flow field-based parameters.
    Graefe R; Borchardt R; Arens J; Schlanstein P; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2010 Nov; 34(11):930-6. PubMed ID: 21092036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling centrifugal cell washers using computational fluid dynamics.
    Kellet BE; Han B; Dandy DS; Wickramasinghe SR
    Artif Organs; 2004 Nov; 28(11):1026-34. PubMed ID: 15504118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biplane angiography for experimental validation of computational fluid dynamic models of blood flow in artificial lungs.
    Jones CC; Capasso P; McDonough JM; Wang D; Rosenstein KS; Zwischenberger JB
    ASAIO J; 2013; 59(4):397-404. PubMed ID: 23820279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of flow patterns in a ventricular assist device: a comparative study of particle image velocimetry and computational fluid dynamics.
    Sato K; Orihashi K; Kurosaki T; Tokumine A; Fukunaga S; Ninomiya S; Sueda T
    Artif Organs; 2009 Apr; 33(4):352-9. PubMed ID: 19335412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the effects of random balloon pulsation on gas exchange in a respiratory assist catheter.
    Eash HJ; Budilarto SG; Hattler BG; Federspiel WJ
    ASAIO J; 2006; 52(2):192-5. PubMed ID: 16557107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamics-analysis of the Niagara hemodialysis catheter in a right heart model.
    Mareels G; De Wachter DS; Verdonck PR
    Artif Organs; 2004 Jul; 28(7):639-48. PubMed ID: 15209857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an implantable oxygenator with cross-flow pump.
    Asakawa Y; Funakubo A; Fukunaga K; Taga I; Higami T; Kawamura T; Fukui Y
    ASAIO J; 2006; 52(3):291-5. PubMed ID: 16760718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methodology for predicting oxygen transport on an intravenous membrane oxygenator combining computational and analytical models.
    Guzmán AM; Escobar RA; Amon CH
    J Biomech Eng; 2005 Dec; 127(7):1127-40. PubMed ID: 16502655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemocompatibility evaluation with experimental and computational fluid dynamic analyses for a monopivot circulatory assist pump.
    Nishida M; Maruyama O; Kosaka R; Yamane T; Kogure H; Kawamura H; Yamamoto Y; Kuwana K; Sankai Y; Tsutsui T
    Artif Organs; 2009 Apr; 33(4):378-86. PubMed ID: 19335415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.