These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [Involvement of cyclin-dependent kinase CDK1/CDC28 in regulation of cell cycle]. Koltovaya NA Genetika; 2013 Jul; 49(7):797-813. PubMed ID: 24450149 [TBL] [Abstract][Full Text] [Related]
3. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Loog M; Morgan DO Nature; 2005 Mar; 434(7029):104-8. PubMed ID: 15744308 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylation of Cdc28 and regulation of cell size by the protein kinase CKII in Saccharomyces cerevisiae. Russo GL; van den Bos C; Sutton A; Coccetti P; Baroni MD; Alberghina L; Marshak DR Biochem J; 2000 Oct; 351(Pt 1):143-50. PubMed ID: 10998356 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control. Mimura S; Seki T; Tanaka S; Diffley JF Nature; 2004 Oct; 431(7012):1118-23. PubMed ID: 15496876 [TBL] [Abstract][Full Text] [Related]
6. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Mendenhall MD; Hodge AE Microbiol Mol Biol Rev; 1998 Dec; 62(4):1191-243. PubMed ID: 9841670 [TBL] [Abstract][Full Text] [Related]
7. Targets of the cyclin-dependent kinase Cdk1. Ubersax JA; Woodbury EL; Quang PN; Paraz M; Blethrow JD; Shah K; Shokat KM; Morgan DO Nature; 2003 Oct; 425(6960):859-64. PubMed ID: 14574415 [TBL] [Abstract][Full Text] [Related]
8. Differential susceptibility of yeast S and M phase CDK complexes to inhibitory tyrosine phosphorylation. Keaton MA; Bardes ES; Marquitz AR; Freel CD; Zyla TR; Rudolph J; Lew DJ Curr Biol; 2007 Jul; 17(14):1181-9. PubMed ID: 17614281 [TBL] [Abstract][Full Text] [Related]
9. Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae. Zhao G; Chen Y; Carey L; Futcher B Mol Cell; 2016 May; 62(4):546-57. PubMed ID: 27203179 [TBL] [Abstract][Full Text] [Related]
10. Cell cycle-dependent phosphorylation of the DNA polymerase epsilon subunit, Dpb2, by the Cdc28 cyclin-dependent protein kinase. Kesti T; McDonald WH; Yates JR; Wittenberg C J Biol Chem; 2004 Apr; 279(14):14245-55. PubMed ID: 14747467 [TBL] [Abstract][Full Text] [Related]
11. Mutation at the CK2 phosphorylation site on Cdc28 affects kinase activity and cell size in Saccharomyces cerevisiae. Russo GL; van den Bos C; Marshak DR Mol Cell Biochem; 2001 Nov; 227(1-2):113-7. PubMed ID: 11827161 [TBL] [Abstract][Full Text] [Related]
12. Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Mok J; Kim PM; Lam HY; Piccirillo S; Zhou X; Jeschke GR; Sheridan DL; Parker SA; Desai V; Jwa M; Cameroni E; Niu H; Good M; Remenyi A; Ma JL; Sheu YJ; Sassi HE; Sopko R; Chan CS; De Virgilio C; Hollingsworth NM; Lim WA; Stern DF; Stillman B; Andrews BJ; Gerstein MB; Snyder M; Turk BE Sci Signal; 2010 Feb; 3(109):ra12. PubMed ID: 20159853 [TBL] [Abstract][Full Text] [Related]
13. Cdc28-dependent regulation of the Cdc5/Polo kinase. Mortensen EM; Haas W; Gygi M; Gygi SP; Kellogg DR Curr Biol; 2005 Nov; 15(22):2033-7. PubMed ID: 16303563 [TBL] [Abstract][Full Text] [Related]
18. Clustering of phosphorylation site recognition motifs can be exploited to predict the targets of cyclin-dependent kinase. Moses AM; Hériché JK; Durbin R Genome Biol; 2007; 8(2):R23. PubMed ID: 17316440 [TBL] [Abstract][Full Text] [Related]
19. Global mapping of protein phosphorylation events identifies Ste20, Sch9 and the cell-cycle regulatory kinases Cdc28/Pho85 as mediators of fatty acid starvation responses in Saccharomyces cerevisiae. Pultz D; Bennetzen MV; Rødkær SV; Zimmermann C; Enserink JM; Andersen JS; Færgeman NJ Mol Biosyst; 2012 Mar; 8(3):796-803. PubMed ID: 22218487 [TBL] [Abstract][Full Text] [Related]