These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 17668068)

  • 1. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist.
    Mailloux RJ; Bériault R; Lemire J; Singh R; Chénier DR; Hamel RD; Appanna VD
    PLoS One; 2007 Aug; 2(8):e690. PubMed ID: 17668068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic adaptation and NADPH homeostasis evoked by a sulfur-deficient environment in Pseudomonas fluorescens.
    Legendre F; Tharmalingam S; Bley AM; MacLean A; Appanna VD
    Antonie Van Leeuwenhoek; 2020 May; 113(5):605-616. PubMed ID: 31828449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress.
    Lemire J; Milandu Y; Auger C; Bignucolo A; Appanna VP; Appanna VD
    FEMS Microbiol Lett; 2010 Aug; 309(2):170-7. PubMed ID: 20597986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-ketoglutarate dehydrogenase and glutamate dehydrogenase work in tandem to modulate the antioxidant alpha-ketoglutarate during oxidative stress in Pseudomonas fluorescens.
    Mailloux RJ; Singh R; Brewer G; Auger C; Lemire J; Appanna VD
    J Bacteriol; 2009 Jun; 191(12):3804-10. PubMed ID: 19376872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonezymatic formation of succinate in mitochondria under oxidative stress.
    Fedotcheva NI; Sokolov AP; Kondrashova MN
    Free Radic Biol Med; 2006 Jul; 41(1):56-64. PubMed ID: 16781453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress.
    Tretter L; Adam-Vizi V
    Philos Trans R Soc Lond B Biol Sci; 2005 Dec; 360(1464):2335-45. PubMed ID: 16321804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity.
    Lemire J; Mailloux R; Auger C; Whalen D; Appanna VD
    Environ Microbiol; 2010 Jun; 12(6):1384-90. PubMed ID: 20353438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic networks to combat oxidative stress in Pseudomonas fluorescens.
    Mailloux RJ; Lemire J; Appanna VD
    Antonie Van Leeuwenhoek; 2011 Mar; 99(3):433-42. PubMed ID: 21153706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen peroxide stress provokes a metabolic reprogramming in Pseudomonas fluorescens: enhanced production of pyruvate.
    Bignucolo A; Appanna VP; Thomas SC; Auger C; Han S; Omri A; Appanna VD
    J Biotechnol; 2013 Sep; 167(3):309-15. PubMed ID: 23871654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycine metabolism and anti-oxidative defence mechanisms in Pseudomonas fluorescens.
    Alhasawi A; Castonguay Z; Appanna ND; Auger C; Appanna VD
    Microbiol Res; 2015 Feb; 171():26-31. PubMed ID: 25644949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospho-transfer networks and ATP homeostasis in response to an ineffective electron transport chain in Pseudomonas fluorescens.
    Appanna VP; Alhasawi AA; Auger C; Thomas SC; Appanna VD
    Arch Biochem Biophys; 2016 Sep; 606():26-33. PubMed ID: 27431058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial dysfunctions in 7-ketocholesterol-treated 158N oligodendrocytes without or with α-tocopherol: Impacts on the cellular profil of tricarboxylic cycle-associated organic acids, long chain saturated and unsaturated fatty acids, oxysterols, cholesterol and cholesterol precursors.
    Leoni V; Nury T; Vejux A; Zarrouk A; Caccia C; Debbabi M; Fromont A; Sghaier R; Moreau T; Lizard G
    J Steroid Biochem Mol Biol; 2017 May; 169():96-110. PubMed ID: 27020660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase.
    Tretter L; Adam-Vizi V
    J Neurosci; 2004 Sep; 24(36):7771-8. PubMed ID: 15356188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: implications for the bioremediation of metal pollutants.
    Alhasawi A; Costanzi J; Auger C; Appanna ND; Appanna VD
    J Biotechnol; 2015 Apr; 200():38-43. PubMed ID: 25724118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens.
    Singh R; Mailloux RJ; Puiseux-Dao S; Appanna VD
    J Bacteriol; 2007 Sep; 189(18):6665-75. PubMed ID: 17573472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aluminum toxicity elicits a dysfunctional TCA cycle and succinate accumulation in hepatocytes.
    Mailloux RJ; Hamel R; Appanna VD
    J Biochem Mol Toxicol; 2006; 20(4):198-208. PubMed ID: 16906525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Oxidative enzyme activity of the tricarboxylic acid cycle in rat skeletal muscles in hypokinesia].
    Ganin IuA
    Kosm Biol Aviakosm Med; 1982; 16(6):37-41. PubMed ID: 7176503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network.
    Singh R; Lemire J; Mailloux RJ; Appanna VD
    PLoS One; 2008 Jul; 3(7):e2682. PubMed ID: 18628998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. α-Tocopherol administration blocks adaptive changes in cell NADH/NAD+ redox state and mitochondrial function leading to inhibition of gastric mucosa cell proliferation in rats.
    Olguín-Martínez M; Hernández-Espinosa DR; Hernández-Muñoz R
    Free Radic Biol Med; 2013 Dec; 65():1090-1100. PubMed ID: 23994576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle.
    Gameiro PA; Laviolette LA; Kelleher JK; Iliopoulos O; Stephanopoulos G
    J Biol Chem; 2013 May; 288(18):12967-77. PubMed ID: 23504317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.