BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 17668220)

  • 1. Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.).
    Smýkal P; Valledor L; Rodríguez R; Griga M
    Plant Cell Rep; 2007 Nov; 26(11):1985-98. PubMed ID: 17668220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula.
    Macas J; Neumann P; Navrátilová A
    BMC Genomics; 2007 Nov; 8():427. PubMed ID: 18031571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/Gypsy family highly amplified in pea and other legume species.
    Chavanne F; Zhang DX; Liaud MF; Cerff R
    Plant Mol Biol; 1998 May; 37(2):363-75. PubMed ID: 9617807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum.
    Pearce SR; Knox M; Ellis TH; Flavell AJ; Kumar A
    Mol Gen Genet; 2000 Jul; 263(6):898-907. PubMed ID: 10954074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of genetic and epigenetic changes in virus-free garlic (Allium sativum L.) plants obtained by meristem culture followed by in vitro propagation.
    Gimenez MD; Yañez-Santos AM; Paz RC; Quiroga MP; Marfil CF; Conci VC; García-Lampasona SC
    Plant Cell Rep; 2016 Jan; 35(1):129-41. PubMed ID: 26466594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses.
    Cieslarová J; Hanáček P; Fialová E; Hýbl M; Smýkal P
    J Appl Genet; 2011 Nov; 52(4):391-401. PubMed ID: 21769669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced.
    Neumann P; Pozárková D; Macas J
    Plant Mol Biol; 2003 Oct; 53(3):399-410. PubMed ID: 14750527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons.
    Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH
    J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems.
    Sharma V; Nandineni MR
    Mol Phylogenet Evol; 2014 Apr; 73():10-7. PubMed ID: 24440815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication.
    Vershinin AV; Allnutt TR; Knox MR; Ambrose MJ; Ellis TH
    Mol Biol Evol; 2003 Dec; 20(12):2067-75. PubMed ID: 12949152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea.
    Ellis TH; Poyser SJ; Knox MR; Vershinin AV; Ambrose MJ
    Mol Gen Genet; 1998 Oct; 260(1):9-19. PubMed ID: 9829823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification.
    Smýkal P
    J Appl Genet; 2006; 47(3):221-30. PubMed ID: 16877800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypervariable 3' UTR region of plant LTR-retrotransposons as a source of novel satellite repeats.
    Macas J; Koblízková A; Navrátilová A; Neumann P
    Gene; 2009 Dec; 448(2):198-206. PubMed ID: 19563868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of traditional and new generation DNA markers declares high genetic diversity and differentiated population structure of wild almond species.
    Sorkheh K; Dehkordi MK; Ercisli S; Hegedus A; Halász J
    Sci Rep; 2017 Jul; 7(1):5966. PubMed ID: 28729554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers.
    Smykal P; Horacek J; Dostalova R; Hybl M
    J Appl Genet; 2008; 49(2):155-66. PubMed ID: 18436990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers.
    Maneesha ; Upadhyaya KC
    J Genet; 2017 Sep; 96(4):551-561. PubMed ID: 28947703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent.
    Smýkal P; Kalendar R; Ford R; Macas J; Griga M
    Heredity (Edinb); 2009 Aug; 103(2):157-67. PubMed ID: 19384338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis.
    Zedek F; Smerda J; Smarda P; Bureš P
    BMC Plant Biol; 2010 Nov; 10():265. PubMed ID: 21118487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of reverse transcriptase fragments of LTR retrotransposons from the genome of Chenopodium quinoa (Amaranthaceae).
    Kolano B; Bednara E; Weiss-Schneeweiss H
    Plant Cell Rep; 2013 Oct; 32(10):1575-88. PubMed ID: 23754338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryopreservation of shoot tips, evaluations of vegetative growth, and assessments of genetic and epigenetic changes in cryo-derived plants of Actinidia spp.
    Zhang XC; Bao WW; Zhang AL; Pathirana R; Wang QC; Liu ZD
    Cryobiology; 2020 Jun; 94():18-25. PubMed ID: 32413358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.