These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17668359)

  • 1. Hand-held photoionization instruments for quantitative detection of sarin vapor and for rapid qualitative screening of contaminated objects.
    Smith PA; Lepage CJ; Harrer KL; Brochu PJ
    J Occup Environ Hyg; 2007 Oct; 4(10):729-38. PubMed ID: 17668359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic solid phase microextraction for sampling of airborne sarin with gas chromatography-mass spectrometry for rapid field detection and quantification.
    Hook GL; Jackson Lepage C; Miller SI; Smith PA
    J Sep Sci; 2004 Aug; 27(12):1017-22. PubMed ID: 15352721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Submarines, spacecraft and exhaled breath.
    Pleil JD; Hansel A
    J Breath Res; 2012 Mar; 6(1):019001. PubMed ID: 22366644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of calibration environment on the performance of direct-reading organic vapor monitors.
    LeBouf RF; Slaven JE; Coffey CC
    J Air Waste Manag Assoc; 2013 May; 63(5):528-33. PubMed ID: 23786144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of organophosphate pesticides using a prototype liquid crystal monitor.
    Adgate JL; Barteková A; Raynor PC; Griggs JG; Ryan AD; Acharya BR; Volkmann CJ; Most DD; Lai S; Bonds MD
    J Environ Monit; 2009 Jan; 11(1):49-55. PubMed ID: 19137139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
    Klecka G; Persoon C; Currie R
    Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing workplace chemical exposures: the role of exposure monitoring.
    Harper M
    J Environ Monit; 2004 May; 6(5):404-12. PubMed ID: 15152307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of the response of some portable, direct-reading 10.2 eV and 11.8 eV photoionization detectors, and a flame ionization gas chromatograph for organic vapors in high humidity atmospheres.
    Barsky JB; Que Hee SS; Clark CS
    Am Ind Hyg Assoc J; 1985 Jan; 46(1):9-14. PubMed ID: 4025151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of chemical weapon agents and simulants using chemical ionization reaction time-of-flight mass spectrometry.
    Cordell RL; Willis KA; Wyche KP; Blake RS; Ellis AM; Monks PS
    Anal Chem; 2007 Nov; 79(21):8359-66. PubMed ID: 17894471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement capability of field portable organic vapor monitoring instruments under different experimental conditions.
    Coffey CC; Pearce TA; Lawrence RB; Hudnall JB; Slaven JE; Martin SB
    J Occup Environ Hyg; 2009 Jan; 6(1):1-8. PubMed ID: 18949604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of an automated monitoring system for oxygenated volatile organic compounds and nitrile compounds in ambient air.
    Roukos J; Plaisance H; Leonardis T; Bates M; Locoge N
    J Chromatogr A; 2009 Dec; 1216(49):8642-51. PubMed ID: 19863965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real time monitoring of hazardous airborne chemicals: a styrene investigation.
    Chen QF; Milburn RK; Karellas NS
    J Hazard Mater; 2006 May; 132(2-3):261-8. PubMed ID: 16297544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sampling and analyses of surfaces contaminated with chemical warfare agents by using a newly developed triple layered composite wipe.
    Imran M; Kumar N; Thakare VB; Gupta AK; Acharya J; Garg P
    Anal Bioanal Chem; 2020 Feb; 412(5):1097-1110. PubMed ID: 31907592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and application of a multi-channel monitoring system for near real-time VOC measurement in a hazardous waste management facility.
    Je CH; Stone R; Oberg SG
    Sci Total Environ; 2007 Sep; 382(2-3):364-74. PubMed ID: 17521707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of calibration and environmental condition on the performance of direct-reading organic vapor monitors.
    Coffey C; LeBouf R; Lee L; Slaven J; Martin S
    J Occup Environ Hyg; 2012; 9(11):670-80. PubMed ID: 23016630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved source apportionment and speciation of low-volume particulate matter samples.
    Schauer JJ; Majestic BJ; Sheesley RJ; Shafer MM; Deminter JT; Mieritz M;
    Res Rep Health Eff Inst; 2010 Dec; (153):3-75; discussion 77-89. PubMed ID: 21409950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a high-performance portable GC with a chemiresistor array detector.
    Zhong Q; Steinecker WH; Zellers ET
    Analyst; 2009 Feb; 134(2):283-93. PubMed ID: 19173051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a refrigerant leak detector to monitor waste gases from halogenated anesthetics.
    Rasmussen H; Thorud S
    J Am Assoc Lab Anim Sci; 2007 Sep; 46(5):64-8. PubMed ID: 17877331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.