These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

968 related articles for article (PubMed ID: 17668655)

  • 1. Kernel-based least squares policy iteration for reinforcement learning.
    Xu X; Hu D; Lu X
    IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical approximate policy iteration with binary-tree state space decomposition.
    Xu X; Liu C; Yang SX; Hu D
    IEEE Trans Neural Netw; 2011 Dec; 22(12):1863-77. PubMed ID: 21990333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online learning control using adaptive critic designs with sparse kernel machines.
    Xu X; Hou Z; Lian C; He H
    IEEE Trans Neural Netw Learn Syst; 2013 May; 24(5):762-75. PubMed ID: 24808426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligent control of a sensor-actuator system via kernelized least-squares policy iteration.
    Liu B; Chen S; Li S; Liang Y
    Sensors (Basel); 2012; 12(3):2632-53. PubMed ID: 22736969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kernel-Based Least Squares Temporal Difference With Gradient Correction.
    Song T; Li D; Cao L; Hirasawa K
    IEEE Trans Neural Netw Learn Syst; 2016 Apr; 27(4):771-82. PubMed ID: 25955853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust reinforcement learning control using integral quadratic constraints for recurrent neural networks.
    Anderson CW; Young PM; Buehner MR; Knight JN; Bush KA; Hittle DC
    IEEE Trans Neural Netw; 2007 Jul; 18(4):993-1002. PubMed ID: 17668656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A clustering-based graph Laplacian framework for value function approximation in reinforcement learning.
    Xu X; Huang Z; Graves D; Pedrycz W
    IEEE Trans Cybern; 2014 Dec; 44(12):2613-25. PubMed ID: 24802018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of anemia treatment in hemodialysis patients via reinforcement learning.
    Escandell-Montero P; Chermisi M; Martínez-Martínez JM; Gómez-Sanchis J; Barbieri C; Soria-Olivas E; Mari F; Vila-Francés J; Stopper A; Gatti E; Martín-Guerrero JD
    Artif Intell Med; 2014 Sep; 62(1):47-60. PubMed ID: 25091172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heuristically-accelerated multiagent reinforcement learning.
    Bianchi RA; Martins MF; Ribeiro CH; Costa AH
    IEEE Trans Cybern; 2014 Feb; 44(2):252-65. PubMed ID: 23757547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceleration of reinforcement learning by policy evaluation using nonstationary iterative method.
    Senda K; Hattori S; Hishinuma T; Kohda T
    IEEE Trans Cybern; 2014 Dec; 44(12):2696-705. PubMed ID: 24733037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.
    Lewis FL; Vamvoudakis KG
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):14-25. PubMed ID: 20350860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partially observable Markov decision processes and performance sensitivity analysis.
    Li Y; Yin B; Xi H
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1645-51. PubMed ID: 19022734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate robust policy iteration using multilayer perceptron neural networks for discounted infinite-horizon Markov decision processes with uncertain correlated transition matrices.
    Li B; Si J
    IEEE Trans Neural Netw; 2010 Aug; 21(8):1270-80. PubMed ID: 20601311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient exploration through active learning for value function approximation in reinforcement learning.
    Akiyama T; Hachiya H; Sugiyama M
    Neural Netw; 2010 Jun; 23(5):639-48. PubMed ID: 20080026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online selective kernel-based temporal difference learning.
    Chen X; Gao Y; Wang R
    IEEE Trans Neural Netw Learn Syst; 2013 Dec; 24(12):1944-56. PubMed ID: 24805214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement-learning-based output-feedback control of nonstrict nonlinear discrete-time systems with application to engine emission control.
    Shih P; Kaul BC; Jagannathan S; Drallmeier JA
    IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1162-79. PubMed ID: 19336317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks.
    Modares H; Lewis FL; Naghibi-Sistani MB
    IEEE Trans Neural Netw Learn Syst; 2013 Oct; 24(10):1513-25. PubMed ID: 24808590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming.
    Zhang H; Song R; Wei Q; Zhang T
    IEEE Trans Neural Netw; 2011 Dec; 22(12):1851-62. PubMed ID: 22057063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient model learning methods for actor-critic control.
    Grondman I; Vaandrager M; Buşoniu L; Babuska R; Schuitema E
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):591-602. PubMed ID: 22156998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kernel temporal differences for neural decoding.
    Bae J; Sanchez Giraldo LG; Pohlmeyer EA; Francis JT; Sanchez JC; Príncipe JC
    Comput Intell Neurosci; 2015; 2015():481375. PubMed ID: 25866504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.