These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17668929)

  • 1. Retention mechanism in reversed-phase liquid chromatography: a molecular perspective.
    Rafferty JL; Zhang L; Siepmann JI; Schure MR
    Anal Chem; 2007 Sep; 79(17):6551-8. PubMed ID: 17668929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation studies on the effects of mobile-phase modification on partitioning in liquid chromatography.
    Wick CD; Siepmann JI; Schure MR
    Anal Chem; 2004 May; 76(10):2886-92. PubMed ID: 15144201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chain conformation and solvent partitioning in reversed-phase liquid chromatography: Monte Carlo simulations for various water/methanol concentrations.
    Zhang L; Rafferty JL; Siepmann JI; Chen B; Schure MR
    J Chromatogr A; 2006 Sep; 1126(1-2):219-31. PubMed ID: 16820151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: molecular-level insights from Monte Carlo simulations.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2009 Mar; 1216(12):2320-31. PubMed ID: 19203762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular-level comparison of alkylsilane and polar-embedded reversed-phase liquid chromatography systems.
    Rafferty JL; Siepmann JI; Schure MR
    Anal Chem; 2008 Aug; 80(16):6214-21. PubMed ID: 18642848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of bonded-phase coverage in reversed-phase liquid chromatography via molecular simulation I. Effects on chain conformation and interfacial properties.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2008 Sep; 1204(1):11-9. PubMed ID: 18691717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular simulation study of the effects of stationary phase and solute chain length in reversed-phase liquid chromatography.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2012 Feb; 1223():24-34. PubMed ID: 22239960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of bonded-phase coverage in reversed-phase liquid chromatography via molecular simulation II. Effects on solute retention.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2008 Sep; 1204(1):20-7. PubMed ID: 18687439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention process in reversed phase TLC systems with polar bonded stationary phases.
    Zapała W; Waksmundzka-Hajnos M
    J Sep Sci; 2005 Apr; 28(6):566-74. PubMed ID: 15881087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention in gas-liquid chromatography with a polyethylene oxide stationary phase: molecular simulation and experiment.
    Sun L; Siepmann JI; Klotz WL; Schure MR
    J Chromatogr A; 2006 Sep; 1126(1-2):373-80. PubMed ID: 16814798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode.
    Wu J; Bicker W; Lindner W
    J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption mechanism in reversed-phase liquid chromatography. Effect of the surface coverage of a monomeric C18-silica stationary phase.
    Gritti F; Guiochon G
    J Chromatogr A; 2006 May; 1115(1-2):142-63. PubMed ID: 16580678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of mobile phase composition and thermodynamics on the normal phase chromatography of echinocandins.
    Roush DJ; Hwang LY; Antia FD
    J Chromatogr A; 2005 Dec; 1098(1-2):55-65. PubMed ID: 16314161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings.
    Bicker W; Wu J; Lämmerhofer M; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry.
    Gritti F; Guiochon G
    J Chromatogr A; 2009 Mar; 1216(10):1776-88. PubMed ID: 18976999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity of the adsorption mechanism of low molecular weight compounds in reversed-phase liquid chromatography.
    Gritti F; Guiochon G
    Anal Chem; 2006 Aug; 78(16):5823-34. PubMed ID: 16906729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titania-based stationary phase in separation of ondansetron and its related compounds.
    Zizkovský V; Kucera R; Klimes J; Dohnal J
    J Chromatogr A; 2008 May; 1189(1-2):83-91. PubMed ID: 18190922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of retention in reversed-phase liquid chromatography. 1. Stationary-phase considerations.
    Cole LA; Dorsey JG
    Anal Chem; 1992 Jul; 64(13):1317-23. PubMed ID: 1503212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention mechanism for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography with monomeric stationary phases.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2011 Dec; 1218(51):9183-93. PubMed ID: 22099228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.