These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17668949)

  • 1. The impact of protons on the incidence of second malignancies in radiotherapy.
    Hall EJ
    Technol Cancer Res Treat; 2007 Aug; 6(4 Suppl):31-4. PubMed ID: 17668949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of protons on the incidence of second malignancies in radiotherapy by Eric J. Hall; Supp.31-34 2007.
    Paganetti H
    Technol Cancer Res Treat; 2007 Dec; 6(6):661-2. PubMed ID: 17994798
    [No Abstract]   [Full Text] [Related]  

  • 3. Intensity-modulated radiation therapy, protons, and the risk of second cancers.
    Hall EJ
    Int J Radiat Oncol Biol Phys; 2006 May; 65(1):1-7. PubMed ID: 16618572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary neutrons in clinical proton radiotherapy: a charged issue.
    Brenner DJ; Hall EJ
    Radiother Oncol; 2008 Feb; 86(2):165-70. PubMed ID: 18192046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Second primitive malignant neoplasm after radiotherapy].
    Doyen J; Courdi A; Gérard JP
    Cancer Radiother; 2010 Jul; 14(4-5):255-62. PubMed ID: 20598615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spot scanning for 250 MeV protons.
    Blattmann H; Coray A; Pedroni E; Greiner R
    Strahlenther Onkol; 1990 Jan; 166(1):45-8. PubMed ID: 2154048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The M. D. Anderson proton therapy system.
    Smith A; Gillin M; Bues M; Zhu XR; Suzuki K; Mohan R; Woo S; Lee A; Komaki R; Cox J; Hiramoto K; Akiyama H; Ishida T; Sasaki T; Matsuda K
    Med Phys; 2009 Sep; 36(9):4068-83. PubMed ID: 19810479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review.
    Tubiana M
    Radiother Oncol; 2009 Apr; 91(1):4-15; discussion 1-3. PubMed ID: 19201045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inaugural Frank Ellis Lecture--latrogenic cancer: the impact of intensity-modulated radiotherapy.
    Hall EJ
    Clin Oncol (R Coll Radiol); 2006 May; 18(4):277-82. PubMed ID: 16703744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dosimetric risk estimates of radiation-induced malignancies after intensity modulated radiotherapy.
    Patil VM; Kapoor R; Chakraborty S; Ghoshal S; Oinam AS; Sharma SC
    J Cancer Res Ther; 2010; 6(4):442-7. PubMed ID: 21358077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors.
    Palm A; Johansson KA
    Acta Oncol; 2007; 46(4):462-73. PubMed ID: 17497313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of radiation quality on the risks of second malignancies.
    Manem VS; Kohandel M; Hodgson DC; Sharpe MB; Sivaloganathan S
    Int J Radiat Biol; 2015 Mar; 91(3):209-17. PubMed ID: 25356906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shielding implications for secondary neutrons and photons produced within the patient during IMPT.
    DeMarco J; Kupelian P; Santhanam A; Low D
    Med Phys; 2013 Jul; 40(7):071701. PubMed ID: 23822405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.
    Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M
    Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of neutron ambient dose equivalent in passive carbon-ion and proton radiotherapies.
    Yonai S; Matsufuji N; Kanai T; Matsui Y; Matsushita K; Yamashita H; Numano M; Sakae T; Terunuma T; Nishio T; Kohno R; Akagi T
    Med Phys; 2008 Nov; 35(11):4782-92. PubMed ID: 19070210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams.
    Zheng Y; Liu Y; Zeidan O; Schreuder AN; Keole S
    Med Phys; 2012 Jun; 39(6):3484-92. PubMed ID: 22755728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors.
    Moteabbed M; Yock TI; Paganetti H
    Phys Med Biol; 2014 Jun; 59(12):2883-99. PubMed ID: 24828559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scattered neutron dose equivalent from an active scanning proton beam delivery system.
    Hecksel D; Sandison GA; Farr JB; Edwards AC
    Australas Phys Eng Sci Med; 2007 Dec; 30(4):326-30. PubMed ID: 18274074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: identification of the main source and reduction in the secondary neutron dose.
    Yonai S; Matsufuji N; Kanai T
    Med Phys; 2009 Oct; 36(10):4830-9. PubMed ID: 19928113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary investigations for the option to use fast uniform scanning with compensators on a gantry designed for IMPT.
    Zenklusen SM; Pedroni E; Meer D; Bula C; Safai S
    Med Phys; 2011 Sep; 38(9):5208-16. PubMed ID: 21978065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.