BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 17669505)

  • 1. A method of extracellular recording of neuronal activity in swimming mice.
    Korshunov VA; Averkin RG
    J Neurosci Methods; 2007 Sep; 165(2):244-50. PubMed ID: 17669505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniature microdrive-headstage assembly for extracellular recording of neuronal activity with high-impedance electrodes in freely moving mice.
    Korshunov VA
    J Neurosci Methods; 2006 Dec; 158(2):179-85. PubMed ID: 16828875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature multichannel preamplifier for extracellular recordings of single unit activity in freely moving and swimming small animals.
    Korshunov VA
    J Neurosci Methods; 2012 Apr; 206(1):15-22. PubMed ID: 22348856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A lightweight telemetry system for recording neuronal activity in freely behaving small animals.
    Schregardus DS; Pieneman AW; Ter Maat A; Jansen RF; Brouwer TJ; Gahr ML
    J Neurosci Methods; 2006 Jul; 155(1):62-71. PubMed ID: 16490257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a twin tetrode microdrive and headstage for hippocampal single unit recordings in behaving mice.
    Jeantet Y; Cho YH
    J Neurosci Methods; 2003 Oct; 129(2):129-34. PubMed ID: 14511816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miniature motorized microdrive and commutator system for chronic neural recording in small animals.
    Fee MS; Leonardo A
    J Neurosci Methods; 2001 Dec; 112(2):83-94. PubMed ID: 11716944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniature microdrive for extracellular recording of neuronal activity in freely moving animals.
    Korshunov VA
    J Neurosci Methods; 1995 Mar; 57(1):77-80. PubMed ID: 7791367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new multi-electrode array design for chronic neural recording, with independent and automatic hydraulic positioning.
    Sato T; Suzuki T; Mabuchi K
    J Neurosci Methods; 2007 Feb; 160(1):45-51. PubMed ID: 16996616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vivo method for recording single unit activity in lumbar spinal cord in mice anesthetized with a volatile anesthetic.
    Cuellar JM; Antognini JF; Carstens E
    Brain Res Brain Res Protoc; 2004 Jun; 13(2):126-34. PubMed ID: 15171995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-chronic motorized microdrive and control algorithm for autonomously isolating and maintaining optimal extracellular action potentials.
    Cham JG; Branchaud EA; Nenadic Z; Greger B; Andersen RA; Burdick JW
    J Neurophysiol; 2005 Jan; 93(1):570-9. PubMed ID: 15229215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An economical multi-channel cortical electrode array for extended periods of recording during behavior.
    Rennaker RL; Ruyle AM; Street SE; Sloan AM
    J Neurosci Methods; 2005 Mar; 142(1):97-105. PubMed ID: 15652622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of radiotelemetry to evaluate electrographic seizures in rats with kainate-induced epilepsy.
    Williams P; White A; Ferraro D; Clark S; Staley K; Dudek FE
    J Neurosci Methods; 2006 Jul; 155(1):39-48. PubMed ID: 16564574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale neural ensemble recording in the brains of freely behaving mice.
    Lin L; Chen G; Xie K; Zaia KA; Zhang S; Tsien JZ
    J Neurosci Methods; 2006 Jul; 155(1):28-38. PubMed ID: 16554093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for recording resistance changes non-invasively during neuronal depolarization with a view to imaging brain activity with electrical impedance tomography.
    Gilad O; Ghosh A; Oh D; Holder DS
    J Neurosci Methods; 2009 May; 180(1):87-96. PubMed ID: 19427534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the isolation quality of extracellularly recorded action potentials.
    Joshua M; Elias S; Levine O; Bergman H
    J Neurosci Methods; 2007 Jul; 163(2):267-82. PubMed ID: 17477972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A lightweight microdrive for single-unit recording in freely moving rats and pigeons.
    Bilkey DK; Russell N; Colombo M
    Methods; 2003 Jun; 30(2):152-8. PubMed ID: 12725781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice.
    Yang S; Cho J; Lee S; Park K; Kim J; Huh Y; Yoon ES; Shin HS
    J Neurosci Methods; 2011 Feb; 195(2):117-27. PubMed ID: 20868709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat.
    Hosp JA; Molina-Luna K; Hertler B; Atiemo CO; Stett A; Luft AR
    J Neurosci Methods; 2008 Jul; 172(2):255-62. PubMed ID: 18582949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.