BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17669526)

  • 21. The role of a P1-type ATPase from Pseudomonas fluorescens SBW25 in copper homeostasis and plant colonization.
    Zhang XX; Rainey PB
    Mol Plant Microbe Interact; 2007 May; 20(5):581-8. PubMed ID: 17506335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-evolution with lytic phage selects for the mucoid phenotype of Pseudomonas fluorescens SBW25.
    Scanlan PD; Buckling A
    ISME J; 2012 Jun; 6(6):1148-58. PubMed ID: 22189495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation.
    Koza A; Kusmierska A; McLaughlin K; Moshynets O; Spiers AJ
    FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28535292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diversification in temporally heterogeneous environments: effect of the grain in experimental bacterial populations.
    Venail PA; Kaltz O; Olivieri I; Pommier T; Mouquet N
    J Evol Biol; 2011 Nov; 24(11):2485-95. PubMed ID: 21899638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global Regulatory Roles of the Histidine-Responsive Transcriptional Repressor HutC in Pseudomonas fluorescens SBW25.
    Naren N; Zhang XX
    J Bacteriol; 2020 Jun; 202(13):. PubMed ID: 32291279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic characterization of psp encoding the DING protein in Pseudomonas fluorescens SBW25.
    Zhang XX; Scott K; Meffin R; Rainey PB
    BMC Microbiol; 2007 Dec; 7():114. PubMed ID: 18088430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings.
    Zhang XX; George A; Bailey MJ; Rainey PB
    Microbiology (Reading); 2006 Jun; 152(Pt 6):1867-1875. PubMed ID: 16735749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unraveling adaptive evolution: how a single point mutation affects the protein coregulation network.
    Knight CG; Zitzmann N; Prabhakar S; Antrobus R; Dwek R; Hebestreit H; Rainey PB
    Nat Genet; 2006 Sep; 38(9):1015-22. PubMed ID: 16921374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Persistence of costly novel genes in the absence of positive selection.
    Escobar-Páramo P; Faivre N; Buckling A; Gougat-Barbera C; Hochberg ME
    J Evol Biol; 2009 Mar; 22(3):536-43. PubMed ID: 19170818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Jones J; Studholme DJ; Knight CG; Preston GM
    Environ Microbiol; 2007 Dec; 9(12):3046-64. PubMed ID: 17991033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of RpoS in stress tolerance and environmental fitness of the phyllosphere bacterium Pseudomonas fluorescens strain 122.
    Stockwell VO; Hockett K; Loper JE
    Phytopathology; 2009 Jun; 99(6):689-95. PubMed ID: 19453227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage.
    Poullain V; Gandon S; Brockhurst MA; Buckling A; Hochberg ME
    Evolution; 2008 Jan; 62(1):1-11. PubMed ID: 18005153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid evolution of adaptive niche construction in experimental microbial populations.
    Callahan BJ; Fukami T; Fisher DS
    Evolution; 2014 Nov; 68(11):3307-16. PubMed ID: 25138718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenotypic variation in the Pseudomonas fluorescens clinical strain MFN1032.
    Rossignol G; Sperandio D; Guerillon J; Duclairoir Poc C; Soum-Soutera E; Orange N; Feuilloley MG; Merieau A
    Res Microbiol; 2009 Jun; 160(5):337-44. PubMed ID: 19409488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of PCB congeners by bacterial strains.
    Rein A; Fernqvist MM; Mayer P; Trapp S; Bittens M; Karlson UG
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):469-81. PubMed ID: 17885752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlation between the change in the kinetics of the ribosomal RNA rrnB P2 promoter and the transition from lag to exponential phase with Pseudomonas fluorescens.
    McKellar RC
    Int J Food Microbiol; 2008 Jan; 121(1):11-7. PubMed ID: 18036694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A conserved mechanism for nitrile metabolism in bacteria and plants.
    Howden AJ; Harrison CJ; Preston GM
    Plant J; 2009 Jan; 57(2):243-53. PubMed ID: 18786181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-cell Raman spectral profiles of Pseudomonas fluorescens SBW25 reflects in vitro and in planta metabolic history.
    Huang WE; Bailey MJ; Thompson IP; Whiteley AS; Spiers AJ
    Microb Ecol; 2007 Apr; 53(3):414-25. PubMed ID: 17334857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Localization of metabolites which are regulators of extracellular protease synthesis in Pseudomonas fluorescens bacteria].
    Vilu RO; Mikel'saar PCh; Lakht TI
    Mikrobiologiia; 1980; 49(5):708-14. PubMed ID: 6777644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens.
    Péchy-Tarr M; Bruck DJ; Maurhofer M; Fischer E; Vogne C; Henkels MD; Donahue KM; Grunder J; Loper JE; Keel C
    Environ Microbiol; 2008 Sep; 10(9):2368-86. PubMed ID: 18484997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.