These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17669732)

  • 1. Drought-induced oxidative stress in Canarian laurel forest tree species growing under controlled conditions.
    Sánchez-Díaz M; Tapia C; Antolín MC
    Tree Physiol; 2007 Oct; 27(10):1415-22. PubMed ID: 17669732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas exchange characteristics of a Canarian laurel forest tree species (Laurus azorica) in relation to environmental conditions and leaf canopy position.
    González-Rodríguez AM; Morales D; Jiménez MS
    Tree Physiol; 2001 Sep; 21(14):1039-45. PubMed ID: 11560817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short- and long-term modulation of the lutein epoxide and violaxanthin cycles in two species of the Lauraceae: sweet bay laurel (Laurus nobilis L.) and avocado (Persea americana Mill.).
    Esteban R; Jiménez MS; Morales D; Jiménez ET; Hormaetxe K; Becerril JM; Osmond B; García-Plazaola JI
    Plant Biol (Stuttg); 2008 May; 10(3):288-97. PubMed ID: 18426476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoprotection of evergreen and drought-deciduous tree leaves to overcome the dry season in monsoonal tropical dry forests in Thailand.
    Ishida A; Yamazaki JY; Harayama H; Yazaki K; Ladpala P; Nakano T; Adachi M; Yoshimura K; Panuthai S; Staporn D; Maeda T; Maruta E; Diloksumpun S; Puangchit L
    Tree Physiol; 2014 Jan; 34(1):15-28. PubMed ID: 24336612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of violaxanthin and lutein epoxide xanthophyll cycles in Lauraceae tree species under field conditions.
    Esteban R; Jiménez ET; Jiménez MS; Morales D; Hormaetxe K; Becerril JM; García-Plazaola JI
    Tree Physiol; 2007 Oct; 27(10):1407-14. PubMed ID: 17669731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants.
    Munné-Bosch S; Peñuelas J
    Planta; 2003 Sep; 217(5):758-66. PubMed ID: 12698367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fog reduces transpiration in tree species of the Canarian relict heath-laurel cloud forest (Garajonay National Park, Spain).
    Ritter A; Regalado CM; Aschan G
    Tree Physiol; 2009 Apr; 29(4):517-28. PubMed ID: 19203969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands.
    Jiménez MS; Nadezhdina N; Cermák J; Morales D
    Tree Physiol; 2000 Nov; 20(17):1149-1156. PubMed ID: 12651490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp. ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula.
    Corcuera L; Morales F; Abadía A; Gil-Pelegrín E
    Tree Physiol; 2005 May; 25(5):599-608. PubMed ID: 15741152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ROS through proficient modulations of antioxidative defense system maintains the structural and functional integrity of photosynthetic apparatus and confers drought tolerance in the facultative halophyte Salvadora persica L.
    Rangani J; Panda A; Patel M; Parida AK
    J Photochem Photobiol B; 2018 Dec; 189():214-233. PubMed ID: 30396132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in the responses of photosystem I and photosystem II of three tree species Cleistanthus sumatranus, Celtis philippensis and Pistacia weinmannifolia exposed to a prolonged drought in a tropical limestone forest.
    Huang W; Fu PL; Jiang YJ; Zhang JL; Zhang SB; Hu H; Cao KF
    Tree Physiol; 2013 Feb; 33(2):211-20. PubMed ID: 23329334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes.
    Ramalho JC; Zlatev ZS; Leitão AE; Pais IP; Fortunato AS; Lidon FC
    Plant Biol (Stuttg); 2014 Jan; 16(1):133-46. PubMed ID: 23647987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves.
    Leipner J; Stamp P; Fracheboud Y
    Planta; 2000 May; 210(6):964-9. PubMed ID: 10872229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of foliar antioxidative and photoprotective defence systems of trees to drought: a meta-analysis.
    Wujeska A; Bossinger G; Tausz M
    Tree Physiol; 2013 Oct; 33(10):1018-29. PubMed ID: 24178981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery.
    Gallé A; Feller U
    Physiol Plant; 2007 Nov; 131(3):412-21. PubMed ID: 18251880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic electron flow, NPQ and photorespiration are crucial for the establishment of young plants of Ricinus communis and Jatropha curcas exposed to drought.
    Lima Neto MC; Cerqueira JVA; da Cunha JR; Ribeiro RV; Silveira JAG
    Plant Biol (Stuttg); 2017 Jul; 19(4):650-659. PubMed ID: 28403551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions.
    Bartoli CG; Gomez F; Gergoff G; Guiamét JJ; Puntarulo S
    J Exp Bot; 2005 May; 56(415):1269-76. PubMed ID: 15781442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operation of the xanthophyll cycle and degradation of D1 protein in the inducible CAM plant, Talinum triangulare, under water deficit.
    Pieters AJ; Tezara W; Herrera A
    Ann Bot; 2003 Sep; 92(3):393-9. PubMed ID: 12881404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species.
    Naumann JC; Young DR; Anderson JE
    Physiol Plant; 2007 Nov; 131(3):422-33. PubMed ID: 18251881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico.
    de la Rosa-Manzano E; Andrade JL; García-Mendoza E; Zotz G; Reyes-García C
    Planta; 2015 Dec; 242(6):1425-38. PubMed ID: 26303983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.