These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 17670752)

  • 1. Molecular mechanisms underlying origin and diversification of the angiosperm flower.
    Theissen G; Melzer R
    Ann Bot; 2007 Sep; 100(3):603-19. PubMed ID: 17670752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower.
    Melzer R; Wang YQ; Theissen G
    Semin Cell Dev Biol; 2010 Feb; 21(1):118-28. PubMed ID: 19944177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ABC model and its applicability to basal angiosperms.
    Soltis DE; Chanderbali AS; Kim S; Buzgo M; Soltis PS
    Ann Bot; 2007 Aug; 100(2):155-63. PubMed ID: 17616563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flower diversity and angiosperm diversification.
    Soltis PS; Soltis DE
    Methods Mol Biol; 2014; 1110():85-102. PubMed ID: 24395253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolving Ideas on the Origin and Evolution of Flowers: New Perspectives in the Genomic Era.
    Chanderbali AS; Berger BA; Howarth DG; Soltis PS; Soltis DE
    Genetics; 2016 Apr; 202(4):1255-65. PubMed ID: 27053123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators.
    Kim S; Koh J; Yoo MJ; Kong H; Hu Y; Ma H; Soltis PS; Soltis DE
    Plant J; 2005 Sep; 43(5):724-44. PubMed ID: 16115069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution.
    Melzer R; Härter A; Rümpler F; Kim S; Soltis PS; Soltis DE; Theißen G
    Ann Bot; 2014 Nov; 114(7):1431-43. PubMed ID: 24902716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development.
    Liu C; Zhang J; Zhang N; Shan H; Su K; Zhang J; Meng Z; Kong H; Chen Z
    Mol Biol Evol; 2010 Jul; 27(7):1598-611. PubMed ID: 20147438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.
    Hernández-Hernández T; Martínez-Castilla LP; Alvarez-Buylla ER
    Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes.
    Becker A; Kaufmann K; Freialdenhoven A; Vincent C; Li MA; Saedler H; Theissen G
    Mol Genet Genomics; 2002 Feb; 266(6):942-50. PubMed ID: 11862488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of candidate class A, B and E floral homeotic genes from the perianthless basal angiosperm Chloranthus spicatus (Chloranthaceae).
    Li GS; Meng Z; Kong HZ; Chen ZD; Theissen G; Lu AM
    Dev Genes Evol; 2005 Sep; 215(9):437-49. PubMed ID: 16028057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny.
    Roddy AB; Guilliams CM; Lilittham T; Farmer J; Wormser V; Pham T; Fine PV; Feild TS; Dawson TE
    J Exp Bot; 2013 Oct; 64(13):4081-8. PubMed ID: 23963676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of 'floral quartets'.
    Wang YQ; Melzer R; Theissen G
    Plant J; 2010 Oct; 64(2):177-90. PubMed ID: 21070403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots.
    Ronse De Craene LP
    Ann Bot; 2007 Sep; 100(3):621-30. PubMed ID: 17513305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression.
    Soltis DE; Ma H; Frohlich MW; Soltis PS; Albert VA; Oppenheimer DG; Altman NS; dePamphilis C; Leebens-Mack J
    Trends Plant Sci; 2007 Aug; 12(8):358-67. PubMed ID: 17658290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When ABC becomes ACB.
    Garay-Arroyo A; Piñeyro-Nelson A; García-Ponce B; Sánchez Mde L; Álvarez-Buylla ER
    J Exp Bot; 2012 Apr; 63(7):2377-95. PubMed ID: 22442416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms.
    Sundström J; Carlsbecker A; Svensson ME; Svenson M; Johanson U; Theissen G; Engström P
    Dev Genet; 1999 Sep; 25(3):253-66. PubMed ID: 10528266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MADS-box genes and floral development: the dark side.
    Heijmans K; Morel P; Vandenbussche M
    J Exp Bot; 2012 Sep; 63(15):5397-404. PubMed ID: 22915743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers.
    Bateman RM; Hilton J; Rudall PJ
    J Exp Bot; 2006; 57(13):3471-503. PubMed ID: 17056677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism.
    Sather DN; Jovanovic M; Golenberg EM
    BMC Plant Biol; 2010 Mar; 10():46. PubMed ID: 20226063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.