BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17670832)

  • 21. Solution structure of the pseudo-5' splice site of a retroviral splicing suppressor.
    Cabello-Villegas J; Giles KE; Soto AM; Yu P; Mougin A; Beemon KL; Wang YX
    RNA; 2004 Sep; 10(9):1388-98. PubMed ID: 15317975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intronic sequences and 3' splice sites control Rous sarcoma virus RNA splicing.
    McNally MT; Beemon K
    J Virol; 1992 Jan; 66(1):6-11. PubMed ID: 1309264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A cellular protein, hnRNP H, binds to the negative regulator of splicing element from Rous sarcoma virus.
    Fogel BL; McNally MT
    J Biol Chem; 2000 Oct; 275(41):32371-8. PubMed ID: 10934202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA processing control in avian retroviruses.
    McNally MT
    Front Biosci; 2008 May; 13():3869-83. PubMed ID: 18508481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of Rous sarcoma virus RNA splicing and stability.
    Arrigo S; Beemon K
    Mol Cell Biol; 1988 Nov; 8(11):4858-67. PubMed ID: 2850470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of Rous sarcoma virus intronic sequences that negatively regulate splicing.
    McNally MT; Gontarek RR; Beemon K
    Virology; 1991 Nov; 185(1):99-108. PubMed ID: 1656608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells.
    Shih SR; Krug RM
    EMBO J; 1996 Oct; 15(19):5415-27. PubMed ID: 8895585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A suboptimal src 3' splice site is necessary for efficient replication of Rous sarcoma virus.
    Zhang L; Stoltzfus CM
    Virology; 1995 Feb; 206(2):1099-107. PubMed ID: 7856084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A bidirectional SF2/ASF- and SRp40-dependent splicing enhancer regulates human immunodeficiency virus type 1 rev, env, vpu, and nef gene expression.
    Caputi M; Freund M; Kammler S; Asang C; Schaal H
    J Virol; 2004 Jun; 78(12):6517-26. PubMed ID: 15163745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of the SR proteins ASF/SF2 and SC35 influences alternative splicing in vivo in diverse ways.
    Wang J; Manley JL
    RNA; 1995 May; 1(3):335-46. PubMed ID: 7489505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The [U4/U6.U5] tri-snRNP-specific 27K protein is a novel SR protein that can be phosphorylated by the snRNP-associated protein kinase.
    Fetzer S; Lauber J; Will CL; Lührmann R
    RNA; 1997 Apr; 3(4):344-55. PubMed ID: 9085842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-protein interactions and 5'-splice-site recognition in mammalian mRNA precursors.
    Kohtz JD; Jamison SF; Will CL; Zuo P; Lührmann R; Garcia-Blanco MA; Manley JL
    Nature; 1994 Mar; 368(6467):119-24. PubMed ID: 8139654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple activities of the human splicing factor ASF.
    Harper JE; Manley JL
    Gene Expr; 1992; 2(1):19-29. PubMed ID: 1535526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of RNA splicing at the Rous sarcoma virus src 3' splice site is mediated by an interaction between a negative cis element and a chicken embryo fibroblast nuclear factor.
    Amendt BA; Simpson SB; Stoltzfus CM
    J Virol; 1995 Aug; 69(8):5068-76. PubMed ID: 7609076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A.
    Gallego ME; Gattoni R; Stévenin J; Marie J; Expert-Bezançon A
    EMBO J; 1997 Apr; 16(7):1772-84. PubMed ID: 9130721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A splicing enhancer in the E4 coding region of human papillomavirus type 16 is required for early mRNA splicing and polyadenylation as well as inhibition of premature late gene expression.
    Rush M; Zhao X; Schwartz S
    J Virol; 2005 Sep; 79(18):12002-15. PubMed ID: 16140776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 57-nucleotide upstream early polyadenylation element in human papillomavirus type 16 interacts with hFip1, CstF-64, hnRNP C1/C2, and polypyrimidine tract binding protein.
    Zhao X; Oberg D; Rush M; Fay J; Lambkin H; Schwartz S
    J Virol; 2005 Apr; 79(7):4270-88. PubMed ID: 15767428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deletion of the N-terminus of SF2/ASF permits RS-domain-independent pre-mRNA splicing.
    Shaw SD; Chakrabarti S; Ghosh G; Krainer AR
    PLoS One; 2007 Sep; 2(9):e854. PubMed ID: 17786225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilization of splicing elements and polyadenylation signal elements in the coupling of polyadenylation and last-intron removal.
    Cooke C; Hans H; Alwine JC
    Mol Cell Biol; 1999 Jul; 19(7):4971-9. PubMed ID: 10373547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The adenovirus E4-ORF4 splicing enhancer protein interacts with a subset of phosphorylated SR proteins.
    Estmer Nilsson C; Petersen-Mahrt S; Durot C; Shtrichman R; Krainer AR; Kleinberger T; Akusjärvi G
    EMBO J; 2001 Feb; 20(4):864-71. PubMed ID: 11179230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.